Powder Metallurgy and Metal Ceramics

, Volume 51, Issue 7–8, pp 429–436 | Cite as

Structure and properties of titanium–chromium diboride composites

  • V. P. Konoval
  • V. Zh. Shemet
  • B. Grushko
  • A. D. Panasyuk
  • T. V. Mosina
  • V. I. Subbotin
REFRACTORY AND CERAMIC MATERIALS

Composites based on binary titanium–chromium diboride are produced by hot pressing. The influence of aluminum nitride additions on the composition, structure, and mechanical and tribotechnical properties of the materials is studied. It is shown that the introduction of up to 10 vol.% AlN into (Ti, Cr)B2 reduces porosity and improves mechanical and tribotechnical properties. The (Ti, Cr)B2–AlN composites were wetted by NiAl alloy and the interaction area was analyzed. The contact angles of wetting are close to zero in this system and terminal solid solutions form in the interaction area. This allowed (Ti, Cr)B2–AlN–NiAl metal ceramics to be obtained. The metal ceramics sintered in vacuum have fine structure consisting of (Ti, Cr)B2 and AlN grains and NiAl alloy.

Keywords

composites titanium–chromium diboride aluminum nitride wetting hardness strength structure 

References

  1. 1.
    G. V. Samsonov, L. Ya. Markovskii, A. F. Zhigach, and M. G. Valyashko, Boron, Its Compounds and Alloys [in Russian], Izd. AN USSR, Kiev (1960), p. 590.Google Scholar
  2. 2.
    M. S. Koval’chenko, L. F. Ochkas, and V. B. Vinokurov, “Hot pressing of binary titanium–chromium diboride,” Powder Metall. Met. Ceram., 19, No. 5, 347–350 (1980).CrossRefGoogle Scholar
  3. 3.
    M. S. Koval’chenko, L. F. Ochkas, and D. Z. Yurchenko, “Wear-resistant hard metals based on the binary titanium-chromium diboride,” Powder Metall. Met. Ceram., 21, No. 11, 876–879 (1982).CrossRefGoogle Scholar
  4. 4.
    G. K. Kozina, I. G. Prikhno, I. Ya. Dzykovich, and S. A. Artemyuk, “Composite wear-resistant coating materials based on binary titanium–chromium diboride,” Sverkhtverd. Mater., No. 3, 14–21 (1996).Google Scholar
  5. 5.
    T. M. Evtushok, O. N. Grigor’ev, A. D. Kostenko, et al., “Tribological properties of composite materials based on refractory titanium compounds,” Powder Metall. Met. Ceram., 44, No. 7–8, 353–357 (2005).CrossRefGoogle Scholar
  6. 6.
    A. P. Umanskii, A. D. Panasyuk, V. P. Konoval, et al., Composite Wear-Resistant Material Based on Titanium Diboride [in Ukrainian], Ukrainian Patent 25933, Bulletin No. 13, appl. April 27, 2007; publ. August 27 (2007).Google Scholar
  7. 7.
    V. P. Konoval, Development of TiCrC and TiCrB 2 Composite Materials with Metal Binders for Depositing Wear-Resistant Coatings [in Ukrainian], Author’s Abstract of PhD Thesis, Kiev (2008), p. 24.Google Scholar
  8. 8.
    G. V. Samsonov, T. I. Serebryakova, and V. A. Neronov, Borides [in Russian], Atomizdat, Moscow (1975), p. 366.Google Scholar
  9. 9.
    M. Bengisu, Engineering Ceramics, Springer-Verlag, Berlin: Heidelberg (2001), p. 620.Google Scholar
  10. 10.
    B. Basu, J. B. Ragu, and A. K. Suri, “Processing and properties of monolithic TiB2 based materials,” Int. Mater. Rev., 51, No. 6, 352–374 (2006).CrossRefGoogle Scholar
  11. 11.
    M. S. Koval’chenko, L. F. Ochkas, R. V. Litvin, et al., “Sintering and strength of hot-pressed ceramics based on titanium diboride,” Powder Metall. Met. Ceram., 46, No. 9–10, 436–441 (2007).CrossRefGoogle Scholar
  12. 12.
    Yu. V. Naidich, Contact Phenomena in Metal Melts [in Russian], Naukova Dumka, Kiev (1972), p. 196.Google Scholar
  13. 13.
    L. H. Li, H. E. Kim, and E. S. Kang, “Sintering and mechanical properties of titanium diboride with aluminum nitride as a sintering aid,” J. Eur. Ceram. Soc., 22, 973–977 (2002).CrossRefGoogle Scholar
  14. 14.
    A. D. Panasyuk, I. A. Podchernyaeva, N. S. Boltovets, et al., “Structure and properties of thin ceramic coatings in the system AlN–TiCrB2,” Powder Metall. Met. Ceram., 45, No. 5–6, 244–250 (2006).CrossRefGoogle Scholar
  15. 15.
    G. K. Kozina and N. V. Tsypin, “Mechanical properties of alloys based on binary titanium–chromium boride,” in: Borides and Associated Materials (Collected Scientific Papers) [in Russian], Inst. Probl. Materialoved. AN USSR, Kiev (1986), pp. 174–179.Google Scholar
  16. 16.
    M. S. Koval’chenko, Theory Underlying Hot Pressing of Porous Materials [in Russian], Naukova Dumka, Kiev (1980), p. 238.Google Scholar
  17. 17.
    T. M. Evtushok, A. M. Koval’chenko, G. L. Zhunkovskii, et al., “Antifriction materials based on binary titanium–chromium boride,” in: Refractory Powder Materials and Associated Coatings (Collected Scientific Papers) [in Russian], Inst. Probl. Materialoved. AN USSR, Kiev (1990), pp. 61–66.Google Scholar
  18. 18.
    A. S. Nechepurenko, É. A. Knyshov, and V. A. Kiselev, “Structure of the composite material based on titanium–chromium boride produced by self-propagating high-temperature synthesis,” in: Borides (Collected Scientific Papers) [in Russian], Inst. Probl. Materialoved. AN USSR, Kiev (1990), pp. 149–151.Google Scholar
  19. 19.
    V. D. Oreshkin, A. D. Panasyuk, and M. S. Borovikova, “Interaction of binary titanium–chromium boride with ferroalloys,” in: Wear-Resistant Coating Materials Based on Refractory Compounds [in Russian], Naukova Dumka, Kiev (1977), pp. 33–39.Google Scholar
  20. 20.
    G. V. Samsonov, A. D. Panasyuk, and G. K. Kozina, “Effect of silicon, molybdenum, chromium, and tin additions on adhesion in the TiCrB2–cupronickel systems,” in: High-Temperature Borides and Silicides [in Russian], Naukova Dumka, Kiev (1978), pp. 123–126.Google Scholar
  21. 21.
    A. P. Umanskii, A. D. Panasyuk, and V. P. Konoval, “Interaction of titanium–chromium diboride with Fe–Ni melts,” Adhez. Raspl. Paika Mater., Issue No. 39, 28–39 (2006).Google Scholar
  22. 22.
    A. P. Umanskii, V. P. Konoval, A. D. Pansyuk, and E. P. Dvornik, “Contact interaction of double titanium and chromium diboride with Fe–Cr alloys,” Powder Metall. Met. Ceram., 46, No. 1–2, 90–94 (2007).CrossRefGoogle Scholar
  23. 23.
    A. P. Umanskii, E. P. Pugachevskaya, and V. P. Konoval, “Studying contact interaction of titanium– chromium diboride with Ni–Cr alloys,” Adhez. Raspl. Paika Mater., Issue No. 41, 44–52 (2008).Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • V. P. Konoval
    • 1
  • V. Zh. Shemet
    • 1
  • B. Grushko
    • 2
  • A. D. Panasyuk
    • 1
  • T. V. Mosina
    • 1
  • V. I. Subbotin
    • 1
  1. 1.Frantsevich Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKievUkraine
  2. 2.Peter Grünberg Institute, Forschungszentrum Jülich GmbHJülichGermany

Personalised recommendations