Powder Metallurgy and Metal Ceramics

, Volume 50, Issue 11–12, pp 714–718 | Cite as

Influence of mechanical activation on electrical properties of barium–zinc–titanate ceramics sintered at 1100°C

  • N. Obradovic
  • S. Filipovic
  • M. Mitric
  • V. Pavlovic
  • V. Paunovic
  • D. Kosanovic
  • I. Balac
  • M. M. Ristic
Article
  • 129 Downloads

Starting mixtures of BaCO3, ZnO, and TiO2 powders are mechanically activated in a planetary ball mill for various periods of time. The powders obtained are sintered isothermally at 1100°C for 120 min. Non-isothermal sintering process is followed by measurements with a sensitive dilatometer, as well. Results of microstructure characterization using SEM analyses along with DTA analyses are provided. These results are correlated with the values of electric resistivity, capacitance, and loss tangent of the samples, and it is found that with increasing milling time, the increase in values of electrical properties is noticed.

Keywords

milling sintering SEM DTA ceramics 

References

  1. 1.
    W. Guoquing, W. Shunhua, and S. Hao, “Microwave dielectric ceramics in the BaO–TiO2–ZnO system doped with MnCO3 and SnO2,” Mat. Lett., 59, 2229 (2005).CrossRefGoogle Scholar
  2. 2.
    J.-H. Choy, Y.-S. Han, and S.-H. Hwang, “Citrate route to Sn-doped BaTi4O9 with microwave dielectric properties,” J. Am. Ceram. Soc., 81, 3197 (1998).CrossRefGoogle Scholar
  3. 3.
    K. H. Yoon, J. B. Kim, W. S. Kim, and E. S. Kim, “Effect of BaSnO3 on the microwave dielectric properties of BaTi9O20,” J. Mater. Res., 11, 1996 (1996).CrossRefGoogle Scholar
  4. 4.
    T. Negas, G. Yeager, S. Bell, and N. Coats, “BaTi4O9/Ba2Ti9O20–based ceramics resurrected for modern microwave applications,” Am. Ceram. Soc. Bull., 72, 80 (1993).Google Scholar
  5. 5.
    W.-Y. Lin, R. F. Speyer, W. S. Hackenberger, and T. R. Shrout, “Microwave properties of Ba2Ti9O20 doper with zirconium and tin oxides,” J. Am. Ceram. Soc., 82, 1207 (1999).CrossRefGoogle Scholar
  6. 6.
    X. Wang, M. Gu, B. Yang, S. Zhu, and W. CaO, “Hall effect and dielectric properties of Mn-doped barium titanate,” Microelectron. Eng., 66, 855 (2003).CrossRefGoogle Scholar
  7. 7.
    B. D. Stojanovic, A. Z. Simoes, C. O. Paiva-Santos, C. Jovalekic, V. V. Mitic, and J. A. Varela, “Mechanochemical synthesis of barium titanate,” J. Eur. Ceram. Soc., 25, 1985 (2005).CrossRefGoogle Scholar
  8. 8.
    A. Balous, O. Ovchar, M. Macek-Krzmanc, and M. Valant, “The homogeneity range and microwave dielectric properties of the BaZn2Ti4O11 ceramics,” J. Eur. Ceram. Soc., 26, 3733 (2006).CrossRefGoogle Scholar
  9. 9.
    O. Yamaguchi, M. Morimi, H. Kawabata, and K. Shimizu, “Formation and transformation of ZnTiO3,” J. Am. Ceram. Soc., 70, 97 (1987).Google Scholar
  10. 10.
    K. T. Paul, S. K. Satpathy, I. Manna, K. K. Chakraborty, and G. B. Nando, “Preparation and characterization of nanostructured materials from fly ash: a waste from thermal power stations, by high energy ball milling,” Nanoscale Res. Lett., 2, 397-404 (2007).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • N. Obradovic
    • 1
  • S. Filipovic
    • 1
  • M. Mitric
    • 2
  • V. Pavlovic
    • 3
  • V. Paunovic
    • 4
  • D. Kosanovic
    • 1
  • I. Balac
    • 1
  • M. M. Ristic
    • 5
  1. 1.Institute of Technical Sciences of the Serbian Academy of Sciences and ArtsBelgradeSerbia
  2. 2.The Vinca Institute of Nuclear SciencesBelgradeSerbia
  3. 3.University of BelgradeBelgradeSerbia
  4. 4.University of NisBelgradeSerbia
  5. 5.Serbian Academy of Sciences and ArtsBelgradeSerbia

Personalised recommendations