Powder Metallurgy and Metal Ceramics

, Volume 48, Issue 11–12, pp 712–717 | Cite as

Structural analysis of Zn2TiO4 doped with MgO

  • M. V. Nikolic
  • N. Obradovic
  • K. M. Paraskevopoulos
  • T. T. Zorba
  • S. M. Savic
  • M. M. Ristic
Structural Materials Research

The starting mixtures of ZnO, TiO2, and MgO (0, 1.25, and 2.5 wt.%) powders are mechanically activated in a high-energy planetary mill for 15 min and then sintered between 800 and 1100°C for 2 h. The influence of MgO addition on the structure of the samples obtained is analyzed with X-ray diffraction and infrared reflection spectroscopy. Room-temperature far-infrared reflectivity spectra of the samples doped with MgO (0, 1.25, and 2.5 wt.%) and sintered at 1100°C in the frequency range between 100 and 1200 cm–1 are measured and analyzed. Optical parameters are determined for seven oscillators belonging to the spinel structure using the four-parameter model of coupled oscillators. Born effective charges are calculated from the transversal/longitudinal splitting.

Keywords

zinc titanate magnesium oxide powders sintering mechanical activation X-ray diffraction infrared reflection spectroscopy structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. N. Lysova, L. P. Shapavalova, and V. P. Luk’yanenko, Inorg. Mater., 27, 542–544 (1991).Google Scholar
  2. 2.
    K. S. Walton and R. K. Datta, Ceram. Trans., 61, 637–644 (1995).Google Scholar
  3. 3.
    M. M. Mikhailov and M. I. Dvoretskii, Inorg. Mater., 27, 2021–2025 (1991).Google Scholar
  4. 4.
    H. T. Kim, J. D. Byun, and Y. Kim, Mat. Res. Bull., 33, 975–986 (1998).CrossRefGoogle Scholar
  5. 5.
    Q. L. Zhang, H. Yang, J. L. Zhou, and H. P. Wang, Mat. Let., 59, 880–884 (2005).CrossRefGoogle Scholar
  6. 6.
    Y.-S. Chang, Y.-H. Chang, I.-G. Chen, and G.-J. Chen, Sol. St. Com., 128, 203–208 (2003).CrossRefADSGoogle Scholar
  7. 7.
    A. C. Chaves, S. J. G. Lima, R. C. M. U. Araujo, et al., J. Sol. St. Chem., 179, 985–992 (2006).CrossRefADSGoogle Scholar
  8. 8.
    R. J. Hill, J. R. Craig, and G. V. Gibbs, Phys. Chem. Minerals, 4, 317–339 (1979).CrossRefADSGoogle Scholar
  9. 9.
    R. L. Millard, R. C. Peterson, and B. K. Hunter, Am. Mineralogist, 80, 885–896 (1995).Google Scholar
  10. 10.
    K. E. Sickafus, J. M. Wills, and N. W. Grimes, J. Am. Ceram. Soc., 82, 3279–3292 (1999).CrossRefGoogle Scholar
  11. 11.
    A. C. Larson and R. B. Von Dreele, General Structure Analysis System (GSAS): Report LAUR 86-748, Los Alamos National Laboratory (2004).Google Scholar
  12. 12.
    B. H. Toby, J. Appl. Cryst., 34, 210–213 (2001).CrossRefGoogle Scholar
  13. 13.
    S. C. Abrahams and J. L. Bernstein, Acta Crystallog., B25, 1233–1236 (1969).Google Scholar
  14. 14.
    F. Gervais and B. Piriou, Phys. Rev. B, 10, 1642–1654 (1974).CrossRefADSGoogle Scholar
  15. 15.
    T. Kurosawa, J. Phys. Soc. Jap., 16, 1298–1308 (1961).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • M. V. Nikolic
    • 1
  • N. Obradovic
    • 2
  • K. M. Paraskevopoulos
    • 3
  • T. T. Zorba
    • 3
  • S. M. Savic
    • 2
  • M. M. Ristic
    • 4
  1. 1.Institute for Multidisciplinary ResearchBelgradeSerbia
  2. 2.Institute of Technical Sciences of Serbian Academy of Sciences and ArtsBelgradeSerbia
  3. 3.Aristotle UniversityThessalonikiGreece
  4. 4.Serbian Academy of Sciences and ArtsBelgradeSerbia

Personalised recommendations