Powder Metallurgy and Metal Ceramics

, Volume 48, Issue 7–8, pp 371–374 | Cite as

Formation of magnesium titanates

  • M. M. Ristic
  • N. Obradovic
  • S. Filipovic
  • A. I. Bykov
  • M. A. Vasil’kovskaya
  • L. A. Klochkov
  • I. I. Timofeeva
Theory, Manufacturing Technology, and Properties of Powders and Fibers
  • 62 Downloads

The paper examines the phase formation in the mechanochemical treatment and subsequent annealing of TiO2 and MgO mixtures. It is established that the MgTiO3 phase forms during annealing of the above powder mixtures at 900, 1000, and 1100°C. Preliminary grinding of oxides in a high-energy planetary-ball mill after annealing produces the MgTiO3 phase within its homogeneity range. The lattice parameters are determined at the boundary of the homogeneity region. Preliminary grinding of the oxide mixture produces the spinel-type Mg2TiO4 phase.

Keywords

oxides grinding annealing magnesium titanates 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Stubicar, A. Tonejc, and M. Stubicar, “Microstructural evolution of some MgO–TiO2 and MgO–Al2O3 powder mixtures during high-energy ball milling and post-annealing studied by X-ray diffraction,” J. All. Compd., 370, 296–301 (2004).CrossRefGoogle Scholar
  2. 2.
    K. J. D. Mackenzie, J. Temuujin, T. S. Jadambaa, et al., “Mechanochemical synthesis and sintering behavior of magnesium aluminate spinel,” J. Mater. Sci., 35, No. 22, 5529 (2000).CrossRefGoogle Scholar
  3. 3.
    W. Kim and F. Saito, “Effect of grinding on synthesis of MgAl2O4 spinel from a powder mixture of Mg(OH)2 and Al(OH)3,” Powder Technol., 113, 1–2, 109–113 (2000).CrossRefGoogle Scholar
  4. 4.
    K. Hamada, T. Isobe, and M. Senna, “Comparative studies of the mechanochemical synthesis of MgTiO3 precursors by milling various mixtures containing oxides and hydroxides,” J. Mater. Sci. Lett., 15, 603–609 (1996).CrossRefGoogle Scholar
  5. 5.
    J. G. Back, T. Isobe, and M. Senna, “Mechanochemical effects on the precursor formation and microwave dielectric characteristics of MgTiO3,” Sol. St. Ionics., 90, 269–273 (1996).CrossRefGoogle Scholar
  6. 6.
    P. Bar-On, I. J. Lin, S. Nadiv, and M. Melamud, “Formation of partially inverse Mg−Al spinel by grinding MgO with γ-Al2O3,” J. Therm. Anal., 42, 207–217 (1994).CrossRefGoogle Scholar
  7. 7.
    R. K. Linde and P. S. DeCarli, “Polymorphic behavior of titania under dynamic loading,” J. Chem. Phys., 50, 319 (1969).CrossRefADSGoogle Scholar
  8. 8.
    Shindo Isamu, “Determination of the phase diagram by the slow cooling float zone method: The system MgO–TiO2,” J. Cryst. Growth, 50, No. 4, 839–851 (1980).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • M. M. Ristic
    • 1
  • N. Obradovic
    • 2
  • S. Filipovic
    • 2
  • A. I. Bykov
    • 3
  • M. A. Vasil’kovskaya
    • 3
  • L. A. Klochkov
    • 3
  • I. I. Timofeeva
    • 3
  1. 1.Serbian Academy of Science and ArtsBelgradeSerbia
  2. 2.Institute of Technical Sciences, Serbian Academy of Science and ArtsBelgradeSerbia
  3. 3.Institute for Problems of Materials Science, National Academy of Sciences of UkraineKievUkraine

Personalised recommendations