Analysis of nonisothermal sintering of zinc-titanate ceramics doped with MgO

  • N. Obradovic
  • S. Stevanovic
  • M. M. Ristic
Article

Abstract

The aim of this work is to analyze nonisothermal sintering of zinc titanate ceramics doped with MgO obtained by mechanical activation. Mixtures of ZnO, TiO2, and MgO (0, 1.25, and 2.5%) are mechanically activated for 15 min in a planetary ball mill. Nonisothermal sintering is performed in air for 120 min at 800, 900, 1000, and 1100 °C. Microstructure parameters are revealed from an approximation method. Structural characterization of ZnO-TiO2-MgO system after milling is performed at room temperature using XRPD measurements. The main conclusions are that mechanical activation leads to the particle size reduction, the increase of dislocation density, and lattice strain. Doped zinc titanate samples achieve higher densities after sintering and the diffusion mechanism is dominant during the sintering process.

Keywords

milling sintering XRPD ZnO-TiO2 system 

References

  1. 1.
    H. T. Kim, Y. Kim, M. Valant, and D. Suvorov, “Titanium incorporation in Zn2TiO4 spinel ceramics,” J. Am. Ceram. Soc., 84, 1081 (2001).Google Scholar
  2. 2.
    J. H. Swisher, J. Yang, and R. P. Gupta, “Attrition-resistant zinc titanate sorbent for sulphur,” Ind. Eng. Chem. Res., 34, 4463 (1995).CrossRefGoogle Scholar
  3. 3.
    H. T. Kim, J. D. Byun, and Y. H. Kim, “Microstructure and microwave dielectric properties of modified zinc titanates (I),” Mater. Res. Bull., 33, 963 (1998).CrossRefGoogle Scholar
  4. 4.
    H. T. Kim, J. D. Byun, and Y. H. Kim, “Microstructure and microwave dielectric properties of modified zinc titanates (II),” Mater. Res. Bull., 33, 975 (1998).CrossRefGoogle Scholar
  5. 5.
    H. T. Kim, S. H. Kim, S. Nahm, et. al., “Low temperature sintering and microwave dielectric properties of zinc metatitanate-rutile mixtures using boron,” J. Am. Ceram. Soc., 82, 3043 (1999).Google Scholar
  6. 6.
    H. T. Kim, S. Nahm, J. D. Byun, and Y. H. Kim, “Low-fired (Zn, Mg)TiO3 microwave dielectrics,” J. Am. Ceram. Soc., 82, 3476 (1999).Google Scholar
  7. 7.
    X. C. Liu, F. Gao, L. L. Zhao, and C. S. Tian, “Low-temperature sintering and phase transition of zinc titanate ceramics with V2O5 and B2O3 addition,” J. Alloys Comp., 436, 285 (2007).CrossRefGoogle Scholar
  8. 8.
    F. H. Dulin and D. E. Rase, “Phase equilibria in the system ZnO-TiO2,” J. Am. Ceram. Soc., 43, 125 (1960).CrossRefGoogle Scholar
  9. 9.
    S. F. Bartram and R. A. Slepetys, “Compound formation and crystal structure in the system ZnO-TiO2,” J. Am. Ceram. Soc., 44, 493 (1961).CrossRefGoogle Scholar
  10. 10.
    O. Yamaguchi, M. Morimi, H. Kawabata, and K. Shimizu, “Formation and transformation of ZnTiO3,” J. Am. Ceram. Soc., 70, C97 (1987).Google Scholar
  11. 11.
    Y. S. Chang, Y. H. Chang, I. G. Chen, et al., “Synthesis and characterization of zinc titanate nano-crystal powders by sol-gel technique,” J. Cryst. Growth, 243, 319 (2002).CrossRefGoogle Scholar
  12. 12.
    J. Yang and J. H. Swisher, “The phase stability of Zn2Ti3O8,” Mater. Charact., 37, 153 (1996).CrossRefGoogle Scholar
  13. 13.
    Y. R. Wang, S. F. Wang, and Y. M. Lin, “Low-temperature sintering of (Zn1−xMgx)TiO3 microwave dielectrics,” Ceram. Internat., 31, 905 (2005).CrossRefGoogle Scholar
  14. 14.
    Y. S. Chang, Y. H. Chang, I. G. Chen, and G. J. Chen, “Synthesis and characterization of zinc titanate doped with magnesium,” Solid St. Commun., 128, 203 (2003).CrossRefGoogle Scholar
  15. 15.
    Y. S. Chang, Y. H. Chang, I. G. Chen, et al., “The structure and properties of zinc titanate doped with strontium,” J. Alloys Comp., 354, 303 (2003).CrossRefGoogle Scholar
  16. 16.
    X. Liu et al., Synthesis, low-temperature sintering and the dielectric properties of the Zn-(1−x)TiO2-xSnO2 (x = 0.04–0.2),” Mater. Res. Bull. (2007), doi:10.1016/j.materresbull.2007.03.029.Google Scholar
  17. 17.
    S. K. Manik, P. Bose, and S. K. Pradhan, “Microstructure characterization and phase transformation kinetics of ball-milled prepared nanocrystalline Zn2TiO4 by Rietveld method,” Mater. Chem. Phys., 82, 837 (2003).CrossRefGoogle Scholar
  18. 18.
    N. Obradovic, N. Labus, T. Sreckovic, and M. M. Ristic, “Dilatometer investigations of reactive sintering of zinc titanate ceramics,” Mat. Sci. Forum, 494, 411 (2005).Google Scholar
  19. 19.
    T. Sreckovic, N. Labus, N. Obradovic, Lj. Zivkovic, “Enhancing synthesis and sintering of zinc titanate using mechanical activation,” Mat. Sci. Forum, 435, 453–454 (2004).Google Scholar
  20. 20.
    Lj. Karanovic, Applied Crystallography [in Serbian], Belgrade University, Belgrade (1996).Google Scholar
  21. 21.
    N. Obradovic, N. Labus, T. Sreckovic, and M. M. Ristic, “The influence of tribophysical activation on Zn2TiO4 synthesis,” Mat. Sci. Forum, 518, 131 (2006).CrossRefGoogle Scholar
  22. 22.
    N. Obradovic, S. Stevanovic, M. Mitric, et al., “Analysis of isothermal sintering of zinc-titanate doped with MgO,” Sci. Sint., 39, 241 (2007).CrossRefGoogle Scholar
  23. 23.
    D. Lance, F. Valdivieso, and P. Goeuriot, “Correlation between densification rate and microstructural evolution for pure alpha alumina,” J. Eur. Ceram. Soc., 24, 2749 (2004).CrossRefGoogle Scholar
  24. 24.
    O. Gillia and D. Bouvard, “Phenomenological analysis of densification kinetics during sintering: application on WC-Co mixture,” Mat. Sci. Eng. A., 279, 185 (2000).CrossRefGoogle Scholar
  25. 25.
    M. V. Nikolic, N. Labus, and M. M. Ristic, “A phenomenological analysis of sintering kinetics from the viewpoint of activated volume,” Sci. Sint., 37, 19 (2005).CrossRefGoogle Scholar
  26. 26.
    J. L. Woolfrey, “Nonisothermal techniques for studying initial-stage sintering,” J. Am. Ceram. Soc., 55, 383 (1972).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • N. Obradovic
    • 1
  • S. Stevanovic
    • 1
  • M. M. Ristic
    • 2
  1. 1.Institute of Technical Sciences of Serbian Academy of Sciences and ArtsBelgrade
  2. 2.Serbian Academy of Sciences and ArtsBelgrade

Personalised recommendations