Advertisement

Transcriptomic Analyses of Chilling Stress Responsiveness in Leaves of Tobacco (Nicotiana tabacum) Seedlings

  • Peilu Zhou
  • Rayyan Khan
  • Qiyao Li
  • Guangliang Liu
  • Na Xu
  • Yinju Yang
  • Yi Wang
  • Shusheng WangEmail author
  • Aiguo ChenEmail author
Original Paper
  • 31 Downloads

Abstract

Low temperature is among the most significant abiotic stresses restricting geographical distribution of plants and reducing crop productivity. However, the molecular regulatory mechanisms of tobacco plants in response to low temperature are poorly understood. To elucidate the molecular mechanisms of chilling tolerance in tobacco, the transcriptomic responses of tobacco under chilling stress were analyzed using RNA-seq analysis. A total of 1675 differentially expressed genes (DEGs) were detected from T12h vs. CK12h and T24h vs. CK24h libraries; among these genes, 1170 genes were upregulated and 505 were downregulated. Additionally, 109 genes were found to be specifically expressed in tobacco seedlings under chilling stress. Functional annotation revealed that the DEGs enriched that categories of regulating soluble sugar and polyamine content and composition to maintain cell osmotic potential, accelerating the de novo synthesis of D1 protein to promote PSII repair, regulating signal transduction such as ABA and GA, and promoting lipid metabolism and lignin synthesis to improve stability of membrane system and mechanical strength of cell wall. This work provides additional insights into the molecular basis of tobacco seedling responses to low-temperature stress.

Keywords

Chilling stress Tobacco (Nicotiana tabacumTranscriptome analysis Gene expression 

Notes

Acknowledgments

We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Funding Information

This research was funded by Fundamental Research Funds for Central Non-Profit Scientific Institution, grant number 1610232016019, and Agricultural Science and Technology Innovation Program, grant number ASTIP-TRIC03.

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflict of interest.

Supplementary material

11105_2019_1167_MOESM1_ESM.docx (15 kb)
S1 Table . List of primers used for qRT-PCR analysis (MSWord). (DOCX 14 kb)
11105_2019_1167_MOESM2_ESM.xls (78 kb)
S2 Table . KEGG annotation analysis of upregulated DEGs responded to chilling (MSexcle). (XLS 78 kb)
11105_2019_1167_MOESM3_ESM.xls (42 kb)
S3 Table . KEGG annotation analysis of downregulated DEGs responded to chilling (MSexcle). (XLS 41 kb)
11105_2019_1167_MOESM4_ESM.xls (91 kb)
S4 Table . Candidate genes involved in tobacco chilling tolerance (MSexcle). (XLS 91 kb)

References

  1. Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P (2008) The coldinducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20(8):2117–2129PubMedPubMedCentralCrossRefGoogle Scholar
  2. Akihiro Y, Shim I-S, Fujihara S (2012) Chilling-stress responses by rice seedlings grown with different ammonium concentrations and its relationship to leaf spermidine content. Journal of Plant Biology 55(3):191–197CrossRefGoogle Scholar
  3. Ali S, Charles TC, Glick BR (2014) Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol Biochem 80:160–167PubMedCrossRefPubMedCentralGoogle Scholar
  4. Allakhverdiev SI, Nishiyama Y, Takahashi S, Miyairi S, Suzuki I, Murata N (2005) Systematic analysis of the relation of electron transport and ATP synthesis to the photodamage and repair of photosystem II in Synechocystis. Plant Physiol 137(1):263–273PubMedPubMedCentralCrossRefGoogle Scholar
  5. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106PubMedPubMedCentralCrossRefGoogle Scholar
  6. Atsushi F, Sho T, Shuichi M, Yoshihiko T, Itsuro T, Kiyoaki K (2013) The rice REDUCED CULM NUMBER11 gene controls vegetative growth under low-temperature conditions in paddy fields independent of RCN1/OsABCG5. Plant Sci 211:70–76CrossRefGoogle Scholar
  7. Bajguz SH (2009) Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem 47(1):1–8PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bari R, Jones J (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69(4):473–488PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bilska A, Sowinski P (2010) Closure of plasmodesmata in maize (Zea mays) at low temperature: a new mechanism for inhibition of photosynthesis. Ann Bot 106(5):675–686PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16(1):1–18PubMedCrossRefPubMedCentralGoogle Scholar
  11. Busov VB, Meilan R, Pearce DW, Ma C, Rood SB, Strauss SH (2003) Activation tagging of a dominant gibberellin catabolism gene (GA 2-oxidase) from poplar that regulates tree stature. Plant Physiol 132(3):1283–1291PubMedPubMedCentralCrossRefGoogle Scholar
  12. Chang WC, Zheng HQ, Chen CN (2016) Comparative transcriptome analysis reveals a potential photosynthate partitioning mechanism between lipid and starch biosynthetic pathways in green microalgae. Algal Res 16:54–62CrossRefGoogle Scholar
  13. Chang YJ, Chung WH, Kim HS et al (2017) Transcriptome profiling of sweet potato tuberous roots during low-temperature storage. Plant Physiol Biochem 112:97–108CrossRefGoogle Scholar
  14. Chao WS (2008) Real-time PCR as a tool to study weed biology. Weed Sci 56:290–296CrossRefGoogle Scholar
  15. Chao Wei, Zhu LX, Wen J, Yi B, Ma CZ, Tu JX, Shen JX, Fu TD (2018) Morphological, transcriptomics and biochemical characterization of new dwarf mutant of Brassica napus. Plant Science 270:97–113PubMedCrossRefPubMedCentralGoogle Scholar
  16. Chen N, Yang Q, Hu D, Pan L, Chi X, Chen M, Yang Z, Wang T, Wang M, He Y, Yu S (2014) Gene expression profiling and identification of resistance genes to low temperature in leaves of peanut (Arachis hypogaea L.). Sci Hortic 169:214–225CrossRefGoogle Scholar
  17. Chen J, Zhang H, Feng M, Zuo D, Hu Y, Jiang T (2016) Transcriptome analysis of woodland strawberry (Fragaria vesca) response to the infection by strawberry vein banding virus (SVBV). Virol J 13:128PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cheng L, Chen X, Jiang C, Ma B, Ren M, Cheng Y, Liu D, Geng R, Yang A (2019) High-density SNP genetic linkage map construction and quantitative trait locus mapping for resistance to cucumber mosaic virus in tobacco (Nicotiana tabacum L.). Crop Journal 7(4):539–547CrossRefGoogle Scholar
  19. Clarke SM, Cristescu SM, Miersch O, Harren FJM, Wasternack C, Mur LA (2009) Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana. New Phytol 182:175–187PubMedCrossRefPubMedCentralGoogle Scholar
  20. Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11(1):163PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cushman JC, Bohnert HJ (2000) Genomic approaches to plant stress tolerance. Curr Opin Plant Biol 3(2):117–124PubMedCrossRefPubMedCentralGoogle Scholar
  22. Dametto A, Sperotto AR, Adamski MJ et al (2015) Cold tolerance in rice germinating seeds revealed by deep RNAseq analysis of contrasting indica genotypes. Plant Sci 238:1–12PubMedCrossRefPubMedCentralGoogle Scholar
  23. Dang X, Thi TGT, Dong G, Wang H, Edzesi WM, Hong D (2014) Genetic diversity and association mapping of seed vigor in rice (Oryza sativa L.). Planta 239(6):1309–1319PubMedCrossRefPubMedCentralGoogle Scholar
  24. Diao GP, Wang YC, Wang C, Yang CP (2011) Cloning and functional characterization of a novel glutathione S-transferase gene from Limonium bicolor. Plant Mol Biol Report 29(1):77–87CrossRefGoogle Scholar
  25. Edner C, Li J, Albrecht T, Mahlow S, Hejazi M, Hussain H, Kaplan F, Guy C, Smith SM, Steup M, Ritte G (2007) Glucan, water dikinase activity stimulates the breakdown of starch granules by plastidial beta-amylases. Plant Physiol 145:17–28PubMedPubMedCentralCrossRefGoogle Scholar
  26. Flohé L (1989) The selenoprotein glutathione peroxidase. In: Glutathione: Dophin D (eds) chemical, biochemical, and medical aspects, part a. John Wiley & Sons, Chichester-New York, pp 643–731Google Scholar
  27. Fujii H, Chinnusamy V, Rodrigues A et al (2009) In vitro reconstitution of an abscisic acid signalling pathway. Nature 462(72, 73):660–664PubMedPubMedCentralCrossRefGoogle Scholar
  28. Furihata T, Maruyama K, Fujita Y, Umezawa T, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2006) Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc Natl Acad Sci 103(6):1988–1993PubMedCrossRefPubMedCentralGoogle Scholar
  29. Greco M, Chiappetta A, Bruno L, Bitonti MB (2012) In Posidonia oceanica cadmium induces changes in DNA methylation and chromatin patterning. J Exp Bot 63(2):3523–3544CrossRefGoogle Scholar
  30. Gu XB, Chen YH, Gao ZH, Qiao YS, Wang XY (2015) Transcription factors and anthocyanin genes related to low-temperature tolerance in rd29A:RdreB1BI transgenic strawberry. Plant Physiol Biochem 89:31–43PubMedCrossRefPubMedCentralGoogle Scholar
  31. Guschina IA, Harwood JL (2006) Mechanisms of temperature adaptation in poikilotherms. FEBS Lett 580(23):5477–5483PubMedCrossRefPubMedCentralGoogle Scholar
  32. Guy C, Kaplan F, Kopka J, Selbig J, Hincha DK (2008) Metabolomics of temperature stress. Physiol Plant 132:220–235PubMedPubMedCentralGoogle Scholar
  33. Hao Li, YanLing Mo, Qi Cui, et al (2019) Transcriptomic and physiological analyses reveal drought adaptation strategies in drought-tolerant and - susceptible watermelon genotypes. Plant Science 278:32–43PubMedCrossRefPubMedCentralGoogle Scholar
  34. Hedden P, Phillips AL (2000) Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci 5(12):523–530PubMedCrossRefGoogle Scholar
  35. Hershkovitz V, Friedman H, Goldschmidt EE, Feygenberg O, Pesis E (2009) Induction of ethylene in avocado fruit in response to chilling stress on the tree. J Plant Physiol 166(17):1855–1862PubMedCrossRefGoogle Scholar
  36. Kang NY, Cho C, Kim NY, Kim J (2012) Cytokinin receptor-dependent and receptor-independent pathways in the dehydration response of Arabidopsis thaliana. J Plant Physiol 169(14):1382–1391PubMedCrossRefPubMedCentralGoogle Scholar
  37. Kaplan F, Guy CL (2004) β-Amylase induction and the protective role of maltose during temperature shock. Plant Physiol 135:1674–1684PubMedPubMedCentralCrossRefGoogle Scholar
  38. Kaplan F, Guy CL (2005) RNA interference of Arabidopsis beta-amylase8 prevents maltose accumulation upon cold shock and increases sensitivity of PSII photochemical efficiency to freezing stress. Plant J 44:730–743PubMedCrossRefPubMedCentralGoogle Scholar
  39. Kobayashi Y, Murata M, Minami H, Yamamoto S, Kagaya Y, Hobo T, Yamamoto A, Hattori T (2005) Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors. Plant J 44(6):939–949PubMedCrossRefGoogle Scholar
  40. Koiwa H, Bressan RA, Hasegawa PM (2006) Identification of plant stress-responsive determinants in arabidopsis by large-scale forward genetic screens. J Exp Bot 57(5):1119–1128PubMedCrossRefPubMedCentralGoogle Scholar
  41. Lee BH, Henderson DA, Zhu JK (2005) The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17:3155–3175PubMedPubMedCentralCrossRefGoogle Scholar
  42. Liu CW, Hsu YK, Cheng YH, Yen HC, Wu YP, Wang CS, Lai CC (2012) Proteomic analysis of salt-responsive ubiquitin-related proteins in rice roots. Rapid Commun Mass Spectrom 26:1649–1660PubMedCrossRefPubMedCentralGoogle Scholar
  43. Livak JK, Schmittgen GT (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408CrossRefGoogle Scholar
  44. Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009a) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064–1068PubMedPubMedCentralGoogle Scholar
  45. Ma YY, Zhang YL, Lu J, Shao H (2009b) Roles of plant soluble sugars and their responses to plant cold stress. Afr J Biotechnol 8:2004–2010Google Scholar
  46. Maksymiec W, Wianowska D, Dawidowicz AL, Radkiewicz S, Mardarowicz M, Krupa Z (2005) The level of jasmonic acid in Arabidopsis thaliana and Phaseolus coccineus plants under heavy metal stress. J Plant Physiol 162(12):1338–1346PubMedCrossRefPubMedCentralGoogle Scholar
  47. Mao XZ, Cai T, Olyarchuk JG, Wei LP (2005) Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21(19):3787–3793PubMedCrossRefPubMedCentralGoogle Scholar
  48. Martone PT, Estevez JM, Lu F, Ruel K, Denny MW, Somerville C, Ralph J (2009) Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Curr Biol 19(2):169–175PubMedCrossRefPubMedCentralGoogle Scholar
  49. Matthew DY, Matthew JW, Gordon KS, Alicia O (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11(2):R14CrossRefGoogle Scholar
  50. Miura K, Furumoto T (2013) Cold signaling and cold response in plants. Int J Mol Sci 14(3):5312–5337.  https://doi.org/10.3390/ijms14035312 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Mustafa RM, Abeer MA, James G, Song JY, Benildo GR (2005) The OsLti6 genes encoding low-molecular-weight membrane proteins are differentially expressed in rice cultivars with contrasting sensitivity to low temperature. Gene 344:171–180CrossRefGoogle Scholar
  52. Nese S, Harshavardhan VT, Govind G, Seiler C, Kohli A (2012) Contrapuntal role of ABA: does it mediate stress tolerance or plant growth retardation under long-term drought stress? Gene 506(2):265–273CrossRefGoogle Scholar
  53. Ogawa A, Audo F, Toyofuku K, Kawashima C (2009) Sucrose metabolism for the development of seminal root in maize seedlings. Plant Prod Sci 12:9–16CrossRefGoogle Scholar
  54. Park JE, Park JY, Kim YS, Staswick PE, Jeon J, Yun J, Kim SY, Kim J, Lee YH, Park CM (2007) GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. J Biol Chem 282(13):10036–10046PubMedCrossRefPubMedCentralGoogle Scholar
  55. Patel D, Franklin KA (2009) Temperature-regulation of plant architecture. Plant Signal Behav 4:577–579PubMedPubMedCentralCrossRefGoogle Scholar
  56. Peilu Z, Qiyao L, Guangliang L, Xu N, Yang Y, Wenlong Z, Aiguo C, Wang S (2019) Integrated analysis of transcriptomic and metabolomic data reveals critical metabolic pathways involved in polyphenol biosynthesis in Nicotiana tabacum under chilling stress. Funct Plant Biol 46(1):30CrossRefGoogle Scholar
  57. Peters D (2007) Raw materials. Adv Biochem Eng Biotechnol 105:1–30PubMedPubMedCentralGoogle Scholar
  58. Rintamäki E, Kettunen R, Aro EM (1996) Differential D1 dephosphorylation in functional and photodamaged photosystem II centers. Dephosphorylation is a prerequisite for degradation of damaged D1. J Biol Chem 271(25):14870–148755PubMedCrossRefPubMedCentralGoogle Scholar
  59. Ruelland E, Zachowski A (2010) How plants sense temperature. Environ Exp Bot 69:225–232CrossRefGoogle Scholar
  60. Ruelland E, Cantrel C, Gawer M, Kader J-C, Zachowski A (2002) Activation of phospholipases C and D is an early response to a cold exposure in Arabidopsis suspension cells. Plant Physiol 130(2):999–1007PubMedPubMedCentralCrossRefGoogle Scholar
  61. Sanghera GS, Wani SH, Hussain W, Singh NB (2011) Engineering cold stress tolerance in crop plants. Current Genomics 12:30–43CrossRefGoogle Scholar
  62. Savitch LV, Ivanov AG, Loreta GS, Huner NPA, John S (2011) Cold stress effects on PSI photochemistry in Zea mays: differential increase of FQR-dependent cyclic electron flow and functional implications. Plant Cell Physiol 52(6):1042–1054PubMedCrossRefPubMedCentralGoogle Scholar
  63. Sharma R, Yang Y, Sharma A, Awasthi S, Awasthi YC (2004) Antioxidant role of glutathione S-transferases: protection against oxidant toxicity and regulation of stress-mediated apoptosis. Antioxid Redox Signal 6(2):289–300PubMedCrossRefPubMedCentralGoogle Scholar
  64. Shi Y, Tian S, Hou L, Huang X, Zhang X, Guo H, Yang S (2012) Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. Plant Cell 24:2578–2595PubMedPubMedCentralCrossRefGoogle Scholar
  65. Shi YL, Wang QF, Hou YH et al (2014) Molecular cloning, expression and enzymatic characterization of glutathione S-transferase from Antarctic sea-ice bacteria Pseudoalteromonas sp.ANT506. Microbiol Res 169(2–3):179–184PubMedCrossRefPubMedCentralGoogle Scholar
  66. Shu S, Guo SR, Sun J, Yuan LY (2012) Effects of salt stress on the structure and function of the photosynthetic apparatus in Cucumis sativus and its protection by exogenous putrescine. Physiol Plant 146(3):285–296PubMedCrossRefPubMedCentralGoogle Scholar
  67. Siritantikorn A, Johansson K, Ahlen K et al (2007) Protection of cells from oxidative stress by microsomal glutathione transferase1. Biochem Biophys Res Commun 355(2):592–596PubMedCrossRefPubMedCentralGoogle Scholar
  68. Solanke AU, Sharma AK (2008) Signal transduction during cold stress in plants. Physiol Mol Biol Plants 14(1–2):69–79PubMedPubMedCentralCrossRefGoogle Scholar
  69. Soon FF, Ng LM, Zhou XE, West GM, Kovach A, Tan MHE, Suino-Powell KM, He Y, Xu Y, Chalmers MJ, Brunzelle JS, Zhang H, Yang H, Jiang H, Li J, Yong EL, Cutler S, Zhu JK, Griffin PR, Melcher K, Xu HE (2012) Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases. Science 335(6064):85–88PubMedCrossRefPubMedCentralGoogle Scholar
  70. Sreenivasulu N, Harshavardhan VT, Govind G, Seiler C, Kohli A (2012) Contrapuntal role of ABA: does it mediate stress tolerance or plant growth retardation under long-term drought stress? Gene 506(2):265–273PubMedCrossRefPubMedCentralGoogle Scholar
  71. Sun XM, Zhu ZZF, Zhang LL et al (2019) Overexpression of ethylene response factors VaERF080 and VaERF087 from Vitis amurensis enhances cold tolerance in Arabidopsis. Sci Hortic 243:320–326CrossRefGoogle Scholar
  72. Takahashi S, Murata N (2005) Interruption of the Calvin cycle inhibits the repair of photosystem II from photodamage. BBA-Bioenergetics 1708(3):352–361PubMedCrossRefPubMedCentralGoogle Scholar
  73. Takano A, Kakehi J, Takahashi T (2012) Thermospermine is not a minor polyamine in the plant kingdom. Plant Cell Physiol 53(4):606–616PubMedCrossRefPubMedCentralGoogle Scholar
  74. Tiburcio AF, Altabella T, Bitrián M, Alcázar R (2014) The roles of polyamines during the lifespan of plants: from development to stress. Planta 240(1):1–18PubMedCrossRefPubMedCentralGoogle Scholar
  75. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28(5):511–515.  https://doi.org/10.1038/nbt.1621 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Trebitsh T, Danon A (2001) Translation of chloroplast psbA mRNA is regulated by signals initiated by both photosystems II and I. Proc Natl Acad Sci 98(21):12289–12294.  https://doi.org/10.1073/pnas.211440698 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Umezawa T, Sugiyama N, Mizoguchi M, Hayashi S, Myouga F, Yamaguchi-Shinozaki K, Ishihama Y, Hirayama T, Shinozaki K (2009) Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc Natl Acad Sci 106:17588–17593PubMedCrossRefPubMedCentralGoogle Scholar
  78. Vass I, Styring S, Hundal T, Koivuniemi A, Aro E, Andersson B (1992) Reversible and irreversible intermediates during photoinhibition of photosystem II: stable reduced QA species promote chlorophyll triplet formation. Proc Natl Acad Sci 89(4):1408–1412PubMedCrossRefPubMedCentralGoogle Scholar
  79. Wang SK, YouHuang B, Shen CJ, Wu YR, SaiNa Z, DeAn J, Guilfoyle TJ, Ming C, YanHua Q (2010) Auxin-related gene families in abiotic stress response in Sorghum bicolor. Functional & Integrative Genomics 10(4):533–546CrossRefGoogle Scholar
  80. Wasternack C (2014) Action of jasmonates in plant stress responses and development-applied aspects. Biotechnol Adv 32(1):31–39PubMedCrossRefPubMedCentralGoogle Scholar
  81. Wei SJ, Du ZL, Gao F et al (2015) Global transcriptome profiles of 'Meyer' Zoysiagrass in response to cold stress. PLoS One 10(6):e0131153PubMedPubMedCentralCrossRefGoogle Scholar
  82. Wongsheree T, Ketsa S, van Doorn WG (2009) The relationship between the chilling injury and membrane damage in lemon basil (Ocimumcitriodourum) leaves. Postharvest Biol Technol 51(1):91–96CrossRefGoogle Scholar
  83. Yamaguchi S, Kamiya Y (2000) Gibberellin biosynthesis: its regulation by endogenous and environmental signals. Plant Cell Physiol 41(3):251–257PubMedCrossRefPubMedCentralGoogle Scholar
  84. Yamamoto A, Shim IS, Fujihara S (2012) Chilling-stress responses by rice seedlings grown with different ammonium concentrations and its relationship to leaf spermidine content. J Plant Biol 55(3):191–197CrossRefGoogle Scholar
  85. Yeshvekar RK, Nitnavare RB, Chakradhar T, Bhatnagar-Mathur P, Reddy MK, Reddy PS (2017) Molecular characterization and expression analysis of pearl millet plasma membrane proteolipid 3 ( Pmp3 ) genes in response to abiotic stress conditions. Plant Gene 10:37–44CrossRefGoogle Scholar
  86. Zhang Y, Ni ZF, Yao YY, Nie XL, Sun QX (2007) Gibberellins and heterosis of plant height in wheat (Triticum aestivum L.). BMC Genet 8(1):40PubMedPubMedCentralCrossRefGoogle Scholar
  87. Zhang XD, Wang RP, Zhang FJ, Tao FQ, Li WQ (2013) Lipid profiling and tolerance to low-temperature stress in Thellungiella salsuginea in comparison with Arabidopsis thaliana. Biol Plant 57(1):149–153CrossRefGoogle Scholar
  88. Zheng YL, Feng YL, Lei YB, Yang CY (2009) Different photosynthetic responses to night chilling among twelve populations of Jatropha curcas. Photosynthetica 47:559–566CrossRefGoogle Scholar
  89. Zhou Y, Xu Z, Duan C, Chen Y, Meng Q, Wu J, Hao Z, Wang Z, Li M, Yong H, Zhang D, Zhang S, Weng J, Li X (2016) Dual transcriptome analysis reveals insights into the response to Rice black streaked dwarf virus in maize. J Exp Bot 67(15):4593–4609PubMedPubMedCentralCrossRefGoogle Scholar
  90. Zhou AM, Sun HW, Feng S et al (2018a) A novel cold-regulated gene from Phlox subulata, PsCor413im1, enhances low temperature tolerance in Arabidopsis. Biochem Biophys Res Commun 495(2):1688–1694PubMedCrossRefPubMedCentralGoogle Scholar
  91. Zhou PL, Li QY, Liu GL, Xu N, Yang YJ, Zeng WL, Chen AG, Wang SS (2018b) Integrated analysis of transcriptomic and metabolomic data reveals critical metabolic pathways involved in polyphenol biosynthesis in Nicotiana tabacum under chilling stress. Funct Plant Biol 46:30–43PubMedCrossRefPubMedCentralGoogle Scholar
  92. Zhu JH, Dong CH, Zhu JK (2007) Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. Curr Opin Plant Biol 10(3):290–295PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Peilu Zhou
    • 1
    • 2
  • Rayyan Khan
    • 1
  • Qiyao Li
    • 1
  • Guangliang Liu
    • 1
  • Na Xu
    • 1
  • Yinju Yang
    • 1
  • Yi Wang
    • 1
  • Shusheng Wang
    • 1
    Email author
  • Aiguo Chen
    • 1
    Email author
  1. 1.Key Laboratory of Tobacco Biology and Processing, Ministry of AgricultureTobacco Research Institute of Chinese Academy of Agricultural SciencesQingdaoPeople’s Republic of China
  2. 2.College of Agronomy, Resources and EnvironmentTianjin Agricultural UniversityTianjinPeople’s Republic of China

Personalised recommendations