Advertisement

QTLs Related to Berry Acidity Identified in a Wine Grapevine Population Grown in Warm Weather

  • Almudena Bayo-Canha
  • Laura Costantini
  • José Ignacio Fernández-Fernández
  • Adrián Martínez-Cutillas
  • Leonor Ruiz-GarcíaEmail author
Original Paper
  • 42 Downloads

Abstract

The optimal balance between sugar and acidity is an essential criterion to elaborate equilibrated and stable wines. The aim of this study was to locate quantitative trait loci (QTLs) for these traits using an F1 population derived from Monastrell and Syrah wine cultivars. Several parameters related to acidity were evaluated during six consecutive years by measuring total soluble solids, total acidity, malic acid, and tartaric acid. Three genetic maps were developed using 104 SSR (simple sequence repeat) and 146 SNP (single-nucleotide polymorphism) markers. The consensus map covered 1174 cM with 238 markers assembled in 19 linkage groups (LGs). Significant QTLs at the genome-wide level were detected, and, although they exhibited a large degree of instability from year to year, QTLs for the ratio of soluble solids to acidity (LG2) and malic acid (LG8) and the ratio of tartaric to malic acid (LG8) were stable in at least 2 years. Several annotated genes involved in sugar and acidity pathways co-located with the confidence intervals of these QTLs and are proposed as putative candidate genes for future studies of these traits.

Keywords

Genetic map Candidate genes Breeding Total acidity Malic acid Tartaric acid 

Notes

Acknowledgments

The authors wish to thank A. Fuentes-Denia for technical assistance and J.A. Martínez-Jiménez for plant management in the field. We are also grateful to the research team of Dr. Stella Grando at the Centre for Research and Innovation, Fondazione Edmund Mach (FEM), in San Michele all’Adige (Italy), for their help in the development of new SNP-based markers. A. Bayo-Canha was a pre-doctoral fellow of the Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario.

Funding Information

This study was financially supported by projects RTA2007-00043 and RTA2011-00029-C02-02 from the Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, co-financed by the European Regional Development Fund.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

11105_2019_1145_MOESM1_ESM.docx (969 kb)
ESM 1 (DOCX 969 kb)
11105_2019_1145_MOESM2_ESM.docx (1.5 mb)
ESM 2 (DOCX 1560 kb)
11105_2019_1145_MOESM3_ESM.docx (30 kb)
ESM 3 (DOCX 30 kb)
11105_2019_1145_MOESM4_ESM.docx (32 kb)
ESM 4 (DOCX 32 kb)
11105_2019_1145_MOESM5_ESM.xlsx (40 kb)
ESM 5 (XLSX 39 kb)
11105_2019_1145_MOESM6_ESM.docx (42 kb)
ESM 6 (DOCX 42.2 kb)
11105_2019_1145_MOESM7_ESM.docx (40 kb)
ESM 7 (DOCX 39.9 kb)
11105_2019_1145_MOESM8_ESM.docx (66 kb)
ESM 8 (DOCX 65.5 kb)

References

  1. Adam-Blondon AF, Roux C, Claux D, Butterlin G, Merdinoglu D, This P (2004) Mapping 254 SSR markers on the Vitis vinifera genome: a tool for grape genetics. Theor Appl Genet 109:1017–1027.  https://doi.org/10.1007/s00122-004-1704-y CrossRefGoogle Scholar
  2. Ban Y, Mitani N, Sato A, Kono A, Hayashi T (2016) Genetic dissection of quantitative trait loci for berry traits in interspecific hybrid grape (Vitis labruscana × Vitis vinifera). Euphytica 211:295–310.  https://doi.org/10.1007/s10681-016-1737-8 CrossRefGoogle Scholar
  3. Battilana J, Costantini L, Emanuelli F, Sevini F, Segala F, Moser S, Velasco R, Versini G, Grando MS (2009) The 1-deoxy-D-xylulose 5-phosphate synthase gene co-localizes with a major QTL affecting monoterpene content in grapevine. Theor Appl Genet 108:653–669.  https://doi.org/10.1007/s0122-008-0927-8 CrossRefGoogle Scholar
  4. Bayo-Canha A, Fernández-Fernández JI, Martínez-Cutillas A, Ruiz-García L (2012) Phenotypic segregation and relationships of agronomic traits in Monastrell x Syrah wine grape progeny. Euphytica 186:393–407.  https://doi.org/10.1007/s10681-012-0622-3 CrossRefGoogle Scholar
  5. Boopathi NM (2013) Genotyping of mapping population. In: Boopathi NM (ed) Genetic mapping and marker assisted selection. Basics, practice and benefits. Springer, India. ISBN 978-81-322-0957-7, pp 39–80CrossRefGoogle Scholar
  6. Cabezas JA, Cervera MT, Ruiz-García L, Carreño J, Martínez-Zapater JM (2006) A genetic analysis of seed and berry weight in grapevine. Genome 49:1572–1585.  https://doi.org/10.1139/g06-122 CrossRefGoogle Scholar
  7. Cabezas JA, Ibáñez J, Lijavetzky D, Vélez D, Bravo G, Rodríguez V, Carreño I, Jermakow AM, Carreño J, Ruiz-García L, Thomas MR, Martínez-Zapater JM (2011) A 48 SNP set for grapevine cultivar identification. BMC Plant Biol 11:153.  https://doi.org/10.1186/1471-2229-11-153 CrossRefGoogle Scholar
  8. Chakravarti A, Lasher LK, Reefer JE (1991) A maximum likelihood method for estimating genome length using genetic linkage data. Genetics 128:175–182Google Scholar
  9. Chen J, Wang N, Fang L-C, Liang Z-C, Li S-H, Wu B-H (2015) Construction of a high-density genetic map and QTLs mapping for sugars and acids in grape berries. BMC Plant Biol 15:28.  https://doi.org/10.1187/s12870-015-0428-2 CrossRefGoogle Scholar
  10. Chialva C, Eichler E, Muñoz C, Lijavetzky D (2016) Development and use of biotechnology tools for grape functional analysis. In: Morata A, Loira I (eds) Grape and wine biotechnology. InTech, pp 75–101.  https://doi.org/10.5772/64915
  11. Cholet C, Claverol S, Claisse O, Rabot A, Osowsky A, Dumot V, Gerrari G, Gény L (2016) Tartaric acid pathways in Vitis vinifera L. (cv. Ugni blanc): a comparative study of two vintages with contrasted climatic conditions. BMC Plant Biol 16:144.  https://doi.org/10.1186/s12870-016-0833-1 CrossRefGoogle Scholar
  12. Cipriani G, Di Gaspero G, Canaguier A, Jusseaume J, Tassin J, Lemainque A, Thareau V, Adam-Blondon A-F, Testolin R (2011) Molecular linkage maps: strategies, resources and achievements. In: Adam-Blondon A-F, Martínez-Zapater JM, Kole C (eds) Genetics, genomics and breeding of grapes. Science Publishers, Enfield, pp 111–136CrossRefGoogle Scholar
  13. Conde C, Silva P, Fontes N, Dias ACP, Tavares RM, Sousa MJ, Agasse A, Delrot S, Gerós H (2007) Biochemical changes throughout grape berry development and fruit and wine quality. Food (Global Science Books) 1:1–22Google Scholar
  14. Coombe BG (1992) Research on development and ripening of the grape berry. Am J Enol Vitic 43:101–110Google Scholar
  15. Costantini L, Battilana J, Lamaj F, Fanizza G, Grando MS (2008) Berry and phenology-related traits in grapevine (Vitis vinifera L.): from quantitative trait loci to underlying genes. BMC Plant Biol 8:38CrossRefGoogle Scholar
  16. Cuéllar T, Azeem F, Andrianteranagna M, Pascaud F, Verdeil JL, Sentenac H, Zimmermann S, Gaillard I (2013) Potassium transport in developing fleshy fruits: the grapevine inward K+ channel Vvk1.2 is activated by CIPK-CBL complexes and induced in ripening berry flesh cells. Plant J 73:1006–1018.  https://doi.org/10.1111/tpj.12092 CrossRefGoogle Scholar
  17. Davies C, Robinson SP (2000) Differential screening indicates a dramatic change in mRNA profiles during grape berry ripening. Cloning and characterization of cDNAs encoding putative cell wall and stress response proteins. Plant Physiol 122:803–812.  https://doi.org/10.1104/pp.122.3.803 CrossRefGoogle Scholar
  18. De la Vega F, Lazaruk KD, Rhodes MD, Wenz MH (2005) Assessment of two flexible and compatible SNP genotyping platforms: TaqMan® SNP genotyping assays and the SNPlex™ genotyping system. Mutat Res 573:111–135.  https://doi.org/10.1016/j.mrfmmm.2005.01.008 CrossRefGoogle Scholar
  19. DeBolt S, Cook DR, Ford CM (2006) L-tartaric acid synthesis form vitamin C in higher plants. PNAS 103:5608–5613.  https://doi.org/10.1073/pnas.0510864103 CrossRefGoogle Scholar
  20. Doligez A, Bouquet A, Danglot Y, Lahogue F, Riaz S, Meredith CP, Edwards KJ, This P (2002) Genetic mapping of grapevine (Vitis vinifera L.) applied to the detection of QTLs for seedlessness and berry weight. Theor Appl Genet 105:780–795.  https://doi.org/10.1007/s00122-002-0951-z CrossRefGoogle Scholar
  21. Doligez A, Adam-Blondon AF, Cipriani G, Di Gaspero G, Laucou V, Merdinoglu D, Meredith CP, Riaz S, Roux C, This P (2006) An integrated SSR map of grapevine based on five mapping populations. Theor Appl Genet 113:369–382.  https://doi.org/10.1007/s00122-006-0295-1 CrossRefGoogle Scholar
  22. Don RH, Cox PT, Wainwrigth BJ, Baker K, Mattick JS (1991) ‘Touchdown’ PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res 19:4008CrossRefGoogle Scholar
  23. Duchêne E, Butterlin G, Claudel P, Dumas V, Jaegli N, Merdinoglu D (2009) A grapevine (Vitis vinifera L.) deoxy-D-xylulose synthase gene colocates with a major quantitative trait loci for terpenol content. Theor Appl Genet 118:541–552.  https://doi.org/10.1007/s00122-008-0919-8 CrossRefGoogle Scholar
  24. Duchêne E, Dumas V, Jaegli N, Merdinoglu D (2014) Genetic variability of descriptors for grapevine berry acidity in Riesling, Gewürztraminer and their progeny. Aust J Grape Wine Res 20:91–99.  https://doi.org/10.1111/ajgw.12051 CrossRefGoogle Scholar
  25. Gerber S, Rodolphe F (1994) An estimation of the genome length of maritime pine (Pinus pinaster Ati). Theor Appl Genet 88:289–292.  https://doi.org/10.1007/BF00223634 CrossRefGoogle Scholar
  26. Gladstones J (1992) Viticulture and environment. Winetitles, AdelaideGoogle Scholar
  27. Grattapaglia D, Sederoff R (1994) Genetic linkage map of Eucalyptus grandis and Eucalyptus urophylla using pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137Google Scholar
  28. Houel C, Chatbanyong R, Doligez A, Rienth M, Foria S, Luchaire N, Roux C, Adivèze A, Lopez G, Farnos M, Pellegrino A, This P, Romieu C, Torregrosa L (2015) Identification of stable QTLs for vegetative and reproductive traits in the microvine (Vitis vinifera L.) using a 18K Infinium chip. BMC Plant Biol 15:205.  https://doi.org/10.1186/s12870-015-0588-0 CrossRefGoogle Scholar
  29. Hulbert SH, Ilott TW, Legg EJ, Lincoln SE, Lander ES, Michelmore RW (1988) Genetic analysis of the fungus Bremia lactucae, using restriction fragment length polymorphisms. Genetics 120:947–958Google Scholar
  30. Jackson RS (2008a) Chemical constituents of grapes and wine. In: Jackson RS (ed) Wine science: principles and applications, 3rd edn. Elsevier, Burlington, pp 270–331CrossRefGoogle Scholar
  31. Jackson RS (2008b) Site selection and climate. In: Jackson RS (ed) Wine science: principles and applications, 3rd edn. Elsevier, Burlington, pp 239–369CrossRefGoogle Scholar
  32. Jansen RC, Stam P (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455Google Scholar
  33. Jones GV, White MA, Cooper OR, Storchmann K (2005) Climate change and global wine quality. Clim Chang 73:319–343.  https://doi.org/10.1007/s10584-005-4704-2 CrossRefGoogle Scholar
  34. Kearsey MJ, Pooni HS (1996) Genes, genetic markers and maps. In: Kearsey MJ, Pooni HS (eds) The genetical analysis of quantitative traits. Stanley Thornes, UK. ISBN 0-7487-4082-1, pp 101–133CrossRefGoogle Scholar
  35. Kliewer WM (1966) Sugar and organic acids of Vitis vinifera. Plant Physiol 41:923–931.  https://doi.org/10.1104/pp.41.6.923 CrossRefGoogle Scholar
  36. Kliewer WM (1973) Berry composition of Vitis vinifera cultivars as influenced by photo- and nycto- temperatures during maturation. Amer Soc Hort Sci J 98:153–159Google Scholar
  37. Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugenics 12:172–175CrossRefGoogle Scholar
  38. Lander E, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199Google Scholar
  39. Lange K, Boehnke M (1982) How many polymorphic genes will it take to spam the human genome? Am J Hum Genet 34:842–845Google Scholar
  40. Laucou V, Launay A, Bacilieri R, Lacombe T, Adam-Blondon AF, Bérard A, Chauveau A, de Andrés MT, Hausmann L, Ibáñez J, Le Paslier M-C, Maghradze D, Martinez-Zapater JM, Maul E, Ponnaiah M, Töpfer R, Péros J-P, Boursiquot J-M (2018) Extended diversity analysis of cultivated grapevine Vitis vinifera with 10K genome-wine SNPs. PLoS One 13:e0192540.  https://doi.org/10.1371/journal.pone.0192540 CrossRefGoogle Scholar
  41. Lechmann EL (1975) Nonparametrics. McGraw-Hill, New YorkGoogle Scholar
  42. Lijavetzky D, Cabezas JA, Ibáñez A, Rodríguez V, Martínez-Zapater JM (2007) High throughput SNP discovery and genotyping in grapevine (Vitis vinifera L.) by combining a re-sequencing approach and SNPlex technology. BMC Genomics 8:424.  https://doi.org/10.1186/1471-2164-8-424 CrossRefGoogle Scholar
  43. Liu HF, Wu BH, Fan PG, Xu HY, Li SH (2007) Inheritance of sugars and acids in berries of grape (Vitis vinifera L.). Euphytica 153:99–107.  https://doi.org/10.1007/s10681-006-9246-9 CrossRefGoogle Scholar
  44. Lodhi MA, Daly MJ, Ye GN, Weeden NF, Reisch B (1995) A molecular marker based linkage map of Vitis. Genome 38:786–794.  https://doi.org/10.1139/g95-100 CrossRefGoogle Scholar
  45. Morreel K, Goeminne G, Storme V, Sterck L, Ralph J, Coppieters W, Breyne P, Steenackers M, Georges M, Messens E, Boerjan W (2006) Genetical metabolomics of flavonoid biosynthesis in Populus: a case study. Plant J 47:224–237CrossRefGoogle Scholar
  46. Or E, Baybik J, Sadka A, Saks Y (2000) Isolation of mitochondrial malate dehydrogenase and phosphoenolpyruvate carboxylase cDNA clones from grape berries and analysis of their expression pattern throughout berry development. J Plant Physiol 157:527–534.  https://doi.org/10.1016/S0176-1617(00)8018-X CrossRefGoogle Scholar
  47. Pego JV, Smeekens SCM (2000) Plant fructokinases: a sweet family get-together. Trends Plant Sci 5:531–536.  https://doi.org/10.1016/S1360-1385(00)01783-0 CrossRefGoogle Scholar
  48. Pflieger S, Lefebvre V, Causse M (2001) The candidate gene approach in plant genetics: a review. Mol Breed 7:275–291.  https://doi.org/10.1023/A:1011605013259 CrossRefGoogle Scholar
  49. Riaz S, Dangl GS, Edwards KJ, Meredith CP (2004) A microsatellite marker based framework linkage map of Vitis vinifera L. Theor Appl Genet 108:864–872.  https://doi.org/10.1007/s00122-003-1488-5 CrossRefGoogle Scholar
  50. Sato A, Yamada M, Iwanami H, Hirakawa N (2000) Optimal spatial and temporal measurement repetition for reducing environmental variation of berry traits in grape breeding. Sci Hortic 85:75–83CrossRefGoogle Scholar
  51. Schnarrenberger C, Martin W (2002) Evolution of the enzymes of the citric acid cycle and the glyoxylate cycle of higher plants. Eur J Biochem 269:868–883.  https://doi.org/10.1046/j.0014-2956.2001.02722.x CrossRefGoogle Scholar
  52. Sweetman C, Deluc LG, Cramer GR, Ford CM, Soole KL (2009) Regulation of malate metabolism in grape berry and other developing fruits. Phytochemistry 70:1329–1344.  https://doi.org/10.1016/j.phytochem.2009.08.006 CrossRefGoogle Scholar
  53. Terrier N, Glissant D, Grimplet J, Barrieu F, Abbal P, Couture C, Ageorges A, Atanassova R, Léon C, Renaudin JP, Dédadéchamp F, Romieu C, Delrot S, Hamdi S (2005) Isogene specific oligo array reveal multifaceted changes in gene expression during grape berry (Vitis vinifera L.) development. Planta 222:832.  https://doi.org/10.1007/s00425-005-0017-y CrossRefGoogle Scholar
  54. Tobler AR, Short S, Andersen MR, Paner TM, Briggs JC, Lambert SM, Wu PP, Wang Y, Spoonde AY, Koehler RT, Peyret N, Chen C, Leong LN, Ma CN, Rosenblum BB, Day JP, Ziegle JS, De La Vega RM, Rhodes MD, Hennessy KM, Wenz HM (2005) The SNPlex genotyping system: a flexible and scalable platform for SNP genotyping. J Biomol Tech 16:398–406Google Scholar
  55. Troggio M, Malacarne G, Coppola G, Segala C, Cartwright DA, Pindo M, Stefanini M, Mank R, Moroldo M, Morgante M, Grando MS, Velasco R (2007) A dense single-nucleotide polymorphism-based genetic linkage map of grapevine (Vitis vinifera L.) anchoring pinot noir bacterial artificial chromosome contigs. Genetics 176:2636–2650.  https://doi.org/10.1534/genetics.106.067462 CrossRefGoogle Scholar
  56. Van Ooijen JW, Voorrips RE (2001) JoinMap® 3.0: software for the calculation of genetic linkage maps. Plant Research International, Wageningen, The NetherlandsGoogle Scholar
  57. Van Ooijen JV, Boer MP, Jansen RC, Maliepaard C (2002) MapQTL® 4.0, software for the calculation of QTL position on genetic maps. Plant Research International, Wageningen, The NetherlandGoogle Scholar
  58. Viana AP, Riaz S, Walker MA (2013) Genetic dissection of agronomic traits within a segregating population of breeding table grapes. Genet Mol Res 12:951–964CrossRefGoogle Scholar
  59. Viana AP, Resende MDV, Riaz S, Walker MA (2016) Genome selection in fruit breeding: application to table grapes. Sci Agric 73:142–149.  https://doi.org/10.1590/0103-9016-2014-0323 CrossRefGoogle Scholar
  60. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78.  https://doi.org/10.1093/jhered/93.1.77 CrossRefGoogle Scholar
  61. Walker AR, Lee E, Bogs J, McDavid DAJ, Thomas MR, Robinson SP (2007) White grapes arose through the mutation of two similar and adjacent regulatory genes. Plant J 49:772–785.  https://doi.org/10.1111/j.1365-313X.2006.02997.x CrossRefGoogle Scholar
  62. Wei X, Sykes SR, Clingeleffer PR (2002) An investigation to estimate genetic parameters in CSIRO’s table grape breeding program. 2. Quality characteristics. Euphytica 128:343–351CrossRefGoogle Scholar
  63. Weinl S, Kudla J (2009) The CBL-CIPK Ca2+-decoding signaling network: function and perspectives. New Phytol 184:517–528.  https://doi.org/10.1111/j.1469-8137.2009.02938.x CrossRefGoogle Scholar
  64. Welter LJ, Baydar NG, Akkurt M, Maul E, Eibach R, Töpfer R, Zyprian EM (2007) Genetic mapping and localization of quantitative trait loci affecting fungal disease resistance and leaf morphology in grapevine (Vitis vinifera L.). Mol Breed 20:359.  https://doi.org/10.1007/s11032-007-9097-7 CrossRefGoogle Scholar
  65. Wen J, Can VT, Zhang Y-M (2013) Multi-QTL mapping for quantitative traits using distorted markers. Mol Breed 31:395–404.  https://doi.org/10.1007/s11032-012-9797-5 CrossRefGoogle Scholar
  66. Xu S (2008) Quantitative trait locus mapping can benefit from segregation distortion. Genetics 180:2201–2208CrossRefGoogle Scholar
  67. Xu S, Hu Z (2009) Mapping quantitative trait loci using distorted markers. Int J Plant Genomics 2009:410825.  https://doi.org/10.1155/2009/410825 Google Scholar
  68. Yang S, Fresnado-Ramírez J, Sun W, Manns DC, Sacks GL, Mansfield AK, Luby JJ, Londo JP, Reisch BI, Cadle-Davidson LE, Fennell AY (2016) Next generation mapping of enological traits in an F2 interspecific grapevine hybrid family. PLoS One 11:e0149560.  https://doi.org/10.1371/journal.pine.0149560 CrossRefGoogle Scholar
  69. Zenoni S, Ferrarini A, Giacomelli E, Xumerle L, Fasoli M, Malerba G, Bellin D, Pezzotti M, Delledonne M (2010) Characterization of transcriptional complexity during berry development in Vitis vinifera using RNA-Seq. Plant Physiol 152:1787–1795.  https://doi.org/10.1104/pp.109.149716 CrossRefGoogle Scholar
  70. Zhang L, Wang S, Li H, Deng Q, Zheng A, Li S, Li P, Li Z, Wang J (2010) Effects of missing marker and segregation distortion on QTL mapping in F2 populations. Theor Appl Genet 121:1071–1082CrossRefGoogle Scholar
  71. Zhao YH, Guo YS, Lin H, Liu ZD, Ma HF, Guo XW, Li K, Yang XX, Niu ZZ, Shi GG (2015) Quantitative trait locus analysis of grape weight and soluble solid content. Genet Mol Res 14:9872–9881.  https://doi.org/10.4238/2015 CrossRefGoogle Scholar
  72. Zhao YH, Su K, Guo YH, Ma HF, Guo XW (2016) Molecular genetic map construction and QTL analysis of fruit maturation period in grapevine. Genet Mol Res 15(2).  https://doi.org/10.4238/gmr.15028040

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Almudena Bayo-Canha
    • 1
  • Laura Costantini
    • 2
  • José Ignacio Fernández-Fernández
    • 1
  • Adrián Martínez-Cutillas
    • 1
  • Leonor Ruiz-García
    • 1
    Email author
  1. 1.Department of ViticultureInstituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA)MurciaSpain
  2. 2.Department of Genomics and Biology of Fruit CropsResearch and Innovation Centre, Fondazione Edmund Mach (FEM)San Michele all’AdigeItaly

Personalised recommendations