Advertisement

Plant Molecular Biology Reporter

, Volume 37, Issue 1–2, pp 98–110 | Cite as

Phylogenetic and Expression Analysis of Mn-CDF Transporters in Pear (Pyrus bretschneideri Rehd.)

  • Lei Hou
  • Dongfang Gu
  • Yun Li
  • Jiyu Li
  • Jingjun Li
  • Xi ChenEmail author
  • Wei ZhangEmail author
Original Paper
  • 181 Downloads

Abstract

Metal tolerance proteins (MTPs) play important roles in heavy metal homeostasis and tolerance in plants. As a part of the MTP family, manganese-cation diffusion facilitator (Mn-CDF) subfamily members transport Mn and iron (Fe) in plants. However, the role of these Mn-CDFs in pear is not well established. In this study, seven members of the Mn-CDF subgroup were identified in Chinese white pear (Pyrus bretschneideri Rehd.), based on recently released draft genome of pear. These members were predicted to encode proteins ranging from 394 to 416 amino acids, including 6 putative transmembrane domains (TMDs), and predicted to localize in the Golgi or vacuole membrane. Furthermore, all the members contained a highly conserved signature sequence in TMD-II and TMD-V. Yeast functional complementation assays demonstrated that the expression of PbMTP8.1, PbMTP8.2, PbMTP9, and PbMTP10 in particular conferred Mn and Fe tolerance, while PbMTP11.1 and PbMTP11.2 only transport Mn, and PbMTP11.3 transports neither Mn nor any other ion that was used in the study. Quantitative real-time PCR analysis indicated that these genes were widely expressed in the root, stem, and leaf tissues of the pear seedlings, but the expression levels differed among the different tissues. The results provide us with systematic information about the Mn-CDF subgroup genes and their possible roles in the distribution and homeostasis of Mn and Fe in pear.

Keywords

Pear Manganese Iron Cation diffusion facilitator Metal tolerance protein 

Abbreviations

CAX

cation exchanger

CDF

cation diffusion facilitator

IRT

iron-regulated transporter

MTP

metal tolerance protein

NRAMP

natural resistance–associated macrophage protein

SD-Ura

synthetic drop-out uracil

TMD

transmembrane domain

VIT

vacuolar iron transporter

WT

wild-type

YPD

yeast extract peptone dextrose

YSL

yellow stripe-like

Notes

Funding Information

This work was supported by the National Natural Science Foundation of China (grant numbers 31301839, 51572131) and a project funded by the Fundamental Research Funds for the Central Universities (grant number KJZ201743).

References

  1. Bailey TL, Johnson J, Grant CE, Noble WS (2015) The MEME Suite. Nucleic Acids Res 43:W39–W49CrossRefGoogle Scholar
  2. Briat JF, Lebrun M (1999) Plant responses to metal toxicity. C R Acad Sci III 322:43–54CrossRefGoogle Scholar
  3. Cao Y, Han Y, Meng D, Li D, Jin Q, Lin Y, Cai Y (2016) Structural, evolutionary, and functional analysis of the Class III peroxidase gene family in Chinese pear (Pyrus bretschneideri Rehd.). Front Plant Sci 7:1–12Google Scholar
  4. Chen Z, Fujii Y, Yamaji N, Masuda S, Takemoto Y, Kamiya T, Yusuyin Y, Iwasaki K, Kato SI, Maeshima M, Ma JF, Ueno D (2013) Mn tolerance in rice is mediated by MTP8.1, a member of the cation diffusion facilitator family. J Exp Bot 64:4375–4387CrossRefGoogle Scholar
  5. Chen J, Yin H, Gu J, Li L, Liu Z, Jiang X, Zhou H, Wei S, Zhang S, Wu J (2015) Genomic characterization, phylogenetic comparison and differential expression of the cyclic nucleotide-gated channels gene family in pear (Pyrus bretchneideri Rehd.). Genomics 105:39–52CrossRefGoogle Scholar
  6. Connorton JM, Jones ER, Rodriguez-Ramiro I, Fairweather-Tait S, Uauy C, Balk J (2017) Wheat vacuolar iron transporter TaVIT2 transports Fe and Mn and is effective for biofortification. Plant Physiol 174:2434–2444CrossRefGoogle Scholar
  7. Dar MA, Wani JA, Raina SK, Bhat MY (2012) Effect of available nutrients on yield and quality of pear fruit Bartlett in Kashmir Valley India. J Environ Biol 33(6):1011–1014Google Scholar
  8. Delhaize E, Kataoka T, Hebb DM, White RG, Ryan PR (2003) Genes encoding proteins of the cation diffusion facilitator family that confer manganese tolerance. Plant Cell 15:1131–1142CrossRefGoogle Scholar
  9. Delhaize E, Gruber BD, Pittman JK, White RG, Leung H, Miao Y, Jiang L, Ryan PR, Richardson AE (2007) A role for the AtMTP11 gene of Arabidopsis in manganese transport and tolerance. Plant J 51:198–210CrossRefGoogle Scholar
  10. Donnini S, Dell’Orto M, Zocchi G (2011) Oxidative stress responses and root lignification induced by Fe deficiency conditions in pear and quince genotypes. Tree Physiol 31:102–113CrossRefGoogle Scholar
  11. Dragisic Maksimovic J, Mojovic M, Maksimovic V, Romheld V, Nikolic M (2012) Silicon ameliorates manganese toxicity in cucumber by decreasing hydroxyl radical accumulation in the leaf apoplast. J Exp Bot 63:2411–2420CrossRefGoogle Scholar
  12. Erbasol I, Bozdag GO, Koc A, Pedas P, Karakaya HC (2013) Characterization of two genes encoding metal tolerance proteins from Beta vulgaris subspecies maritima that confers manganese tolerance in yeast. Biometals 26:795–804CrossRefGoogle Scholar
  13. Eroglu S, Giehl RFH, Meier B, Takahashi M, Terada Y, Ignatyev K, Andresen E, Küpper H, Peiter E, von Wirén N (2017) Metal tolerance protein 8 mediates manganese homeostasis and iron reallocation during seed development and germination. Plant Physiol 174:1633–1647CrossRefGoogle Scholar
  14. Finn RD, Attwood TK, Babbitt PC, Bateman A, Bork P, Bridge AJ, Chang HY, Dosztanyi Z, El-Gebali S, Fraser M, Gough J, Haft D, Holliday GL, Huang H, Huang X, Letunic I, Lopez R, Lu S, Marchler-Bauer A, Mi H, Mistry J, Natale DA, Necci M, Nuka G, Orengo CA, Park Y, Pesseat S, Piovesan D, Potter SC, Rawlings ND, Redaschi N, Richardson L, Rivoire C, Sangrador-Vegas A, Sigrist C, Sillitoe I, Smithers B, Squizzato S, Sutton G, Thanki N, Thomas PD, Tosatto SCE, Wu CH, Xenarios I, Yeh LS, Young SY, Mitchell AL (2017) InterPro in 2017-beyond protein family and domain annotations. Nucleic Acids Res 45:D190–D199CrossRefGoogle Scholar
  15. Fu XZ, Zhou X, Xing F, Ling LL, Chun CP, Cao L, Aarts MGM, Peng LZ (2017) Genome-wide identification, cloning and functional analysis of the zinc/iron-regulated transporter-like protein (ZIP) gene family in trifoliate orange (Poncirus trifoliata L. Raf.). Front Plant Sci 8:1–12Google Scholar
  16. Garcia-Hernandez M, Berardini TZ, Chen G, Crist D, Doyle A, Huala E, Knee E, Lambrecht M, Miller N, Mueller LA, Mundodi S, Reiser L, Rhee SY, Scholl R, Tacklind J, Weems DC, Wu Y, Xu I, Yoo D, Yoon J, Zhang P (2002) TAIR: a resource for integrated Arabidopsis data. Funct Integr Genomics 2:239–253CrossRefGoogle Scholar
  17. Gietz RD, Schiestl RH (2007) Quick and easy yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:35–37CrossRefGoogle Scholar
  18. Gustin JL, Zanis MJ, Salt DE (2011) Structure and evolution of the plant cation diffusion facilitator family of ion transporters. BMC Evol Biol 11:76CrossRefGoogle Scholar
  19. Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296–1297CrossRefGoogle Scholar
  20. Ikinci A, Bolat I, Ercisli S, Kodad O (2014) Influence of rootstocks on growth, yield, fruit quality and leaf mineral element contents of pear cv. “Santa Maria” in semi-arid conditions. Biol Res 47:1–8CrossRefGoogle Scholar
  21. Jeong J, Guerinot ML (2009) Homing in on iron homeostasis in plants. Trends Plant Sci 14:280–285CrossRefGoogle Scholar
  22. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858CrossRefGoogle Scholar
  23. Koike S, Inoue H, Mizuno D, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2004) OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J 39:415–424CrossRefGoogle Scholar
  24. Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefGoogle Scholar
  25. Letunic I, Doerks T, Bork P (2015) SMART: recent updates, new developments and status in 2015. Nucleic Acids Res 43:D257–D260CrossRefGoogle Scholar
  26. Li JM, Zheng DM, Li LT, Qiao X, Wei SW, Bai B, Zhang SL, Wu J (2015) Genome-wide function, evolutionary characterization and expression analysis of sugar transporter family genes in pear (Pyrus bretschneideri Rehd). Plant Cell Physiol 56:1721–1737CrossRefGoogle Scholar
  27. Lopez-Millan AF, Morales F, Abadia A, Abadia J (2001) Iron deficiency-associated changes in the composition of the leaf apoplastic fluid from field-grown pear (Pyrus communis L.) trees. J Exp Bot 52:1489–1498CrossRefGoogle Scholar
  28. Ma G, Li JY, Li JJ, Li Y, Gu DF, Chen C, Cui J, Chen X, Zhang W (2018) OsMTP11, a trans-Golgi network localized transporter, is involved in manganese tolerance in rice. Plant Sci 274:59–69CrossRefGoogle Scholar
  29. Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Bryant SH (2015) CDD: NCBI’s conserved domain database. Nucleic Acids Res 43:D222–D226CrossRefGoogle Scholar
  30. Migocka M, Kosieradzka A, Papierniak A, Maciaszczyk-Dziubinska E, Posyniak E, Garbiec A, Filleur S (2015) Two metal-tolerance proteins, MTP1 and MTP4, are involved in Zn homeostasis and Cd sequestration in cucumber cells. J Exp Bot 66:1001–1015CrossRefGoogle Scholar
  31. Montanini B, Blaudez D, Jeandroz S, Sanders D, Chalot M (2007) Phylogenetic and functional analysis of the cation diffusion facilitator (CDF) family: improved signature and prediction of substrate specificity. BMC Genomics 8:107CrossRefGoogle Scholar
  32. Olson SA (2002) EMBOSS opens up sequence analysis. European Molecular Biology Open Software Suite. Br Bioinform 3:87–91CrossRefGoogle Scholar
  33. Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek RL, Lee Y, Zheng L, Orvis J, Haas B, Wortman J, Buell CR (2007) The TIGR rice genome annotation resource: improvements and new features. Nucleic Acids Res 35:D883–D887CrossRefGoogle Scholar
  34. Pedas P, Stokholm MS, Hegelund JN, Ladegård AH, Schjoerring JK, Husted S (2014) Golgi localized barley MTP8 proteins facilitate Mn transport. PLoS One 9:1–21CrossRefGoogle Scholar
  35. Peiter E, Montanini B, Gobert A, Pedas P, Husted S, Maathuis FJM, Blaudez D, Chalot M, Sanders D (2007) A secretory pathway-localized cation diffusion facilitator confers plant manganese tolerance. Proc Natl Acad Sci U S A 104:8532–8537CrossRefGoogle Scholar
  36. Pittman JK (2005) Managing the manganese: molecular mechanisms of manganese transport and homeostasis. New Phytol 167:733–742CrossRefGoogle Scholar
  37. Schubert TS (1992) Manganese toxicity of plants in Florida. Plant Pathol Circ 20–21Google Scholar
  38. Sinha S, Lynn AM (2014) HMM-ModE: implementation, benchmarking and validation with HMMER3. BMC Res Notes 7:483CrossRefGoogle Scholar
  39. Sudweeks SN, Cromar K, Mizukawa M, Poffenberger K, Tovar F (2003) Single-cell real-time quantitative RT-PCR analysis of neuronal nicotinic acetylcholine receptor subunits in rat hippocampal interneurons. Soc Neurosci Abstr Viewer Itiner Plan. Abstract No. 465.5Google Scholar
  40. Takemoto Y, Tsunemitsu Y, Fujii-Kashino M, Mitani-Ueno N, Yamaji N, Ma JF, Kato SI, Iwasaki K, Ueno D (2017) The tonoplast-localized transporter MTP8.2 contributes to manganese detoxification in the shoots and roots of Oryza sativa L. Plant Cell Physiol 58:1573–1582CrossRefGoogle Scholar
  41. Tsunemitsu Y, Yamaji N, Ma JF, Kato SI, Iwasaki K, Ueno D (2018) Rice reduces Mn uptake in response to Mn stress. Plant Signal Behav 13:e1422466CrossRefGoogle Scholar
  42. Ueno D, Sasaki A, Yamaji N, Miyaji T, Fujii Y, Takemoto Y, Moriyama S, Che J, Moriyama Y, Iwasaki K, Ma JF (2015) A polarly localized transporter for efficient manganese uptake in rice. Nat Plants 1Google Scholar
  43. Vatansever R, Filiz E, Eroglu S (2017) Genome-wide exploration of metal tolerance protein (MTP) genes in common wheat (Triticum aestivum): insights into metal homeostasis and biofortification. Biometals 30:217–235CrossRefGoogle Scholar
  44. Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, Hochstrasser DF (1999) Protein identification and analysis tools in the ExPASy server. Methods Mol Biol 112:531–552Google Scholar
  45. Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, Khan MA, Tao S, Korban SS, Wang H, Chen NJ, Nishio T, Xu X, Cong L, Qi K, Huang X, Wang Y, Zhao X, Wu J, Deng C, Gou C, Zhou W, Yin H, Qin G, Sha Y, Tao Y, Chen H, Yang Y, Song Y, Zhan D, Wang J, Li L, Dai M, Gu C, Wang Y, Shi D, Wang X, Zhang H, Zeng L, Zheng D, Wang C, Chen M, Wang G, Xie L, Sovero V, Sha S, Huang W, Zhang S, Zhang M, Sun J, Xu L, Li Y, Liu X, Li Q, Shen J, Wang J, Paull RE, Bennetzen JL, Zhang S (2013) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23:396–408CrossRefGoogle Scholar
  46. Xiao H, Yin L, Xu X, Li T, Han Z (2008) The iron-regulated transporter, MbNRAMP1, isolated from Malus baccata is involved in Fe, Mn and Cd trafficking. Ann Bot 102:881–889CrossRefGoogle Scholar
  47. Yang J, Chen J, Chen X, Ma G, Wang P, Fabrice MR, Zhang S, Wu J (2016) Phylogenetic and expression analysis of pear yellow stripe-like transporters and functional verification of PbrYSL4 in pear pollen. Plant Mol Biol Report 34:737–747CrossRefGoogle Scholar
  48. Zhang J (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18:292–298CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biochemistry & Molecular Biology, College of Life SciencesNanjing Agricultural UniversityNanjingChina

Personalised recommendations