Advertisement

Plant Molecular Biology Reporter

, Volume 36, Issue 4, pp 675–684 | Cite as

Chlorophyll deficient 3, Encoding a Putative Potassium Efflux Antiporter, Affects Chloroplast Development Under High Temperature Conditions in Rice (Oryza sativa L.)

  • Rongjian Luo
  • Hanwei Jiang
  • Yusong Lv
  • Shikai Hu
  • Zhonghua Sheng
  • Gaoneng Shao
  • Shaoqing Tang
  • Peisong Hu
  • Xiangjin Wei
Original Paper
  • 95 Downloads

Abstract

Potassium efflux antiporters (KEAs) play important roles in the regulation of monovalent cation efflux to maintain ion homeostasis in plant cells; however, details of their function in chloroplast development remain elusive, especially under stress conditions. Here, we identified a KEA family gene based on three chlorophyll-deficient mutants, cde3-1, 2, 3. These cde3 mutants exhibit serious white stripe leaf and an albino midrib phenotype, reduced level of photosynthetic pigments, and arrested chloroplast development under high-temperature conditions. Map-based cloning and allelism tests showed that CDE3 encodes a putative KEA protein in rice. CDE3 is mainly expressed in green tissues, with maximum transcript abundance in young leaves. Subcellular localization analysis showed that CDE3 is localized in chloroplasts. Quantitative real-time PCR analysis showed that expression levels of genes associated with chlorophyll biosynthesis, photosynthesis, and chloroplast development are affected in cde3-1, which suggest that CDE3 plays an important role in chloroplast K+/H+ homeostasis and chloroplast development under high-temperature conditions.

Keywords

Chlorophyll/deficient mutants Chloroplast development High temperature Potassium efflux antiporters (KEAs) Rice (Oryza sativa L.) 

Notes

Author’s Contribution

X. W. and P. H. designed the experiments. R. L., H. J., X. W., Z. S., and G. S. carried out the experimental work. H. J. and X. W. wrote the first draft of the manuscript which was critically revised and implemented by Y. L., S. H., and S. T. All authors discussed the results and commented on the final version of the manuscript.

Funding

This work was supported by the National Key Research and Development Program of China (2016YFD0101801), the National Natural Science Foundation of China (31521064), and by the National S&T Major Project (2016ZX08001006).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

11105_2018_1109_MOESM1_ESM.pdf (456 kb)
ESM 1 (PDF 455 kb)

References

  1. Aranda-Sicilia MN, Cagnac O, Chanroj S, Sze H, Rodríguez-Rosales MP, Venema K (2012) Arabidopsis KEA2 a homolog of bacterial KefC encodes a K+/H+ antiporter with a chloroplast transit peptide. Biochim Biophys Acta 1818:2362–2371CrossRefGoogle Scholar
  2. Aranda-Sicilia MN, Aboukila A, Armbruster U, Cagnac O, Schumann T, Kunz HH, Jahns P, Rodriguez-Rosales MP, Sze H, Venema K (2016) Envelope K+/H+ antiporters AtKEA1 and AtKEA2 function in plastid development. Plant Physiol 172:441–449CrossRefPubMedPubMedCentralGoogle Scholar
  3. Armbruster U, Carrillo LR, Venema K, Pavlovic L, Schmidtmann E, Kornfeld A, Jahns P, Berry JA, Kramer DM, Jonikas MC (2014) Ion antiport accelerates photosynthetic acclimation in fluctuating light environments. Nat Commun 5:5439CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chen SB, Tao LZ, Zeng LR, Vega-Sanchez ME, Umemura K, Wang GL (2006) A highly efficient transient protoplast system for analyzing defence gene expression and protein-protein interactions in rice. Mol Plant Pathol 7:417–427CrossRefPubMedGoogle Scholar
  5. Deng XJ, Chang JY, Xiao CL, Zhang HQ (2010) Main factors and strategies on purify of seed production of two-line hybrid rice. Crop Res (Chinese Version) 24:46–51Google Scholar
  6. Dong H, Fei GL, Wu CY, Wu FQ, Sun YY, Chen MJ, Ren YL, Zhou KN, Cheng ZJ, Wang JL, Jiang L, Zhang X, Guo XP, Lei CL, Su N, Wang HY, Wan JM (2013) A rice Virescent-yellow leaf mutant reveals new insights into the role and assembly of plastid Caseinolytic protease in higher plants. Plant Physiol 162:1867–1880CrossRefPubMedPubMedCentralGoogle Scholar
  7. Fang Z, Mi F, Berkowitz GA (1995) Molecular and physiological analysis of a thylakoid K+ channel protein. Plant Physiol 108:1725–1734CrossRefPubMedPubMedCentralGoogle Scholar
  8. Hess WR, Borner T (1999) Organellar RNA polymerases of higher plants. Int Rev Cytol 190:1–59CrossRefPubMedGoogle Scholar
  9. Jarvis P, López-Juez E (2013) Biogenesis and homeostasis of chloroplasts and other plastids. Nat Rev Mol Cell Biol 14:787–802CrossRefPubMedGoogle Scholar
  10. Jibran R, Sullivan KL, Crowhurst R, Erridge ZA, Chagne D, McLachlan ARG, Brummell DA, Dijkwel PP, Hunter DA (2015) Staying green postharvest: how three mutations in the Arabidopsis chlorophyll b reductase gene NYC1 delay degreening by distinct mechanisms. J Exp Bot 66:6849–6862Google Scholar
  11. Jung KH, Hur J, Ryu CH, Choi Y, Chung YY, Miyao A, Hirochika H, An G (2003) Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol 44:463–472CrossRefPubMedGoogle Scholar
  12. Kunz HH, Gierth M, Herdean A, Satoh-Cruz M, Kramer DM, Spetea C, Schroeder JI (2014) Plastidial transporters KEA1, −2, and −3 are essential for chloroplast osmoregulation, integrity, and pH regulation in Arabidopsis. Proc Natl Acad Sci U S A 111:7480–7485CrossRefGoogle Scholar
  13. Kusumi K, Hirotsuka S, Shimada H, Chono Y, Matsuda O, Iba K (2010) Contribution of chloroplast biogenesis to carbon-nitrogen balance during early leaf development in rice. J Plant Res 123:617–622CrossRefPubMedGoogle Scholar
  14. Lerbs-Mache S (2011) Function of plastid sigma factors in higher plants: regulation of gene expression or just preservation of constitutive transcription? Plant Mol Biol 76:235–249CrossRefPubMedGoogle Scholar
  15. Liu WZ, Fu YP, Hu GC, Si HM, Zhu L, Wu C, Sun ZX (2007) Identification and fine mapping of a thermo-sensitive chlorophyll deficient mutant in rice (Oryza sativa L.). Planta 226:785–795CrossRefPubMedGoogle Scholar
  16. Liu J, Wang J, Yao X, Zhang Y, Li J, Wang X, Xu Z, Chen W (2015) Characterization and fine mapping of thermo-sensitive chlorophyll deficit mutant1 in rice (Oryza sativa L.). Breed Sci 65:161–169Google Scholar
  17. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 (−Delta Delta C (T)) method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  18. López-Juez E (2007) Plastid biogenesis, between light and shadows. J Exp Bot 58:11–26CrossRefPubMedGoogle Scholar
  19. Lv Y, Shao G, Qiu J, Jiao G, Sheng Z, Xie L, Wu Y, Tang S, Wei X, Hu P (2017) White Leaf and Panicle 2, encoding a PEP-associated protein, is required for chloroplast biogenesis under heat stress in rice. J Exp Bot 68:5147–5160CrossRefPubMedPubMedCentralGoogle Scholar
  20. Nelson BK, Cai X, Nebenfuhr A (2007) A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51:1126–1136CrossRefPubMedGoogle Scholar
  21. Rast A, Heinz S, Nickelsen J (2015) Biogenesis of thylakoid membranes. Biochim Biophys Acta 1847:821–830CrossRefPubMedGoogle Scholar
  22. Rodriguez F, Garrido JL, Sobrino C, Johnsen G, Riobo P, Franco J, Aamot I, Ramilo I, Sanz N, Kremp A (2016) Divinyl chlorophyll a in the marine eukaryotic protist Alexandrium ostenfeldii (Dinophyceae). Environ Microbiol 18:627–643CrossRefPubMedGoogle Scholar
  23. Sakamoto W, Miyagishima SY, Jarvis P (2008) Chloroplast biogenesis: control of plastid development, protein import, division and inheritance. Arabidopsis Book 6:e0110CrossRefPubMedPubMedCentralGoogle Scholar
  24. Sheng P, Tan J, Jin M, Wu F, Zhou K, Ma W, Heng Y, Wang J, Guo X, Zhang X, Cheng Z, Liu L, Wang C, Liu X, Wan J (2014) Albino midrib 1, encoding a putative potassium efflux antiporter, affects chloroplast development and drought tolerance in rice. Plant Cell Rep 33:1581–1594CrossRefPubMedGoogle Scholar
  25. Song J, Wei XJ, Shao GN, Sheng ZH, Chen DB, Liu CL, Jiao GA, Xie LH, Tang SQ, Hu PS (2014) The rice nuclear gene WLP1 encoding a chloroplast ribosome L13 protein is needed for chloroplast development in rice grown under low temperature conditions. Plant Mol Biol 84:301–314CrossRefPubMedGoogle Scholar
  26. Su N, Hu ML, Wu DX, Wu FQ, Fei GL, Lan Y, Chen XL, Shu XL, Zhang X, Guo XP, Cheng ZJ, Lei CL, Qi CK, Jiang L, Wang H, Wan JM (2012) Disruption of a rice pentatricopeptide repeat protein causes a seedling-specific albino phenotype and its utilization to enhance seed purity in hybrid rice production. Plant Physiol 159:227–238CrossRefPubMedPubMedCentralGoogle Scholar
  27. Sugimoto H, Kusumi K, Noguchi K, Yano M, Yoshimura A, Iba K (2007) The rice nuclear gene, VIRESCENT 2, is essential for chloroplast development and encodes a novel type of guanylate kinase targeted to plastids and mitochondria. Plant J 52:512–527CrossRefPubMedGoogle Scholar
  28. Wang L, Wang C, Wang Y, Niu M, Ren Y, Zhou K, Zhang H, Lin Q, Wu F, Cheng Z, Wang J, Zhang X, Guo X, Jiang L, Wan J (2016) WSL3, a component of the plastid-encoded plastid RNA polymerase, is essential for early chloroplast development in rice. Plant Mol Biol 92:581–595CrossRefPubMedGoogle Scholar
  29. Wu W, Berkowitz GA (1992) Stromal pH and photosynthesis are affected by electroneutral K and H exchange through chloroplast envelope ion channels. Plant Physiol 98:666–672CrossRefPubMedPubMedCentralGoogle Scholar
  30. Wu Z, Zhang X, He B, Diao L, Sheng S, Wang J, Guo X, Su N, Wang L, Jiang L, Wang C, Zhai H, Wan J (2007) A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol 145:29–40CrossRefPubMedPubMedCentralGoogle Scholar
  31. Yoo SC, Cho SH, Sugimoto H, Li JJ, Kusumi K, Koh HJ, Iba K, Paek NC (2009) Rice Virescent3 and Stripe1 encoding the large and small subunits of ribonucleotide reductase are required for chloroplast biogenesis during early leaf development. Plant Physiol 150:388–401CrossRefPubMedPubMedCentralGoogle Scholar
  32. Yu QB, Huang C, Yang ZN (2014) Nuclear-encoded factors associated with the chloroplast transcription machinery of higher plants. Front Plant Sci 5:316PubMedPubMedCentralGoogle Scholar
  33. Zhang Q, Shen BZ, Dai XK, Mei MH, Saghai Maroof MA, Li ZB (1994) Using bulked extremes and recessive class to map genes for photoperiod-sensitive genic male sterility in rice. Proc Natl Acad Sci U S A 91:8675–8679CrossRefPubMedPubMedCentralGoogle Scholar
  34. Zhao J, Li PH, Motes CM, Park S, Hirschi KD (2015) CHX14 is a plasma membrane K-efflux transporter that regulates K+ redistribution in Arabidopsis thaliana. Plant Cell Environ 38:2223–2238CrossRefPubMedGoogle Scholar
  35. Zheng K, Zhao J, Lin D, Chen J, Xu J, Zhou H, Teng S, Dong Y (2016) The rice TCM5 gene encoding a novel Deg protease protein is essential for chloroplast development under high temperatures. Rice 9:13Google Scholar
  36. Zhou K, Ren Y, Zhou F, Wang Y, Zhang L, Lyu J, Wang Y, Zhao S, Ma W, Zhang H, Wang L, Wang C, Wu F, Zhang X, Guo X, Cheng Z, Wang J, Lei C, Jiang L, Li Z, Wan J (2016) Young Seedling Stripe 1 encodes a chloroplast nucleoid-associated protein required for chloroplast development in rice seedlings. Planta 244:1–16CrossRefGoogle Scholar
  37. Zhu XY, Guo S, Wang ZW, Du Q, Xing YD, Zhang TQ, Shen WQ, Sang XC, Ling YH, He GH (2016) Map-based cloning and functional analysis of YGL8, which controls leaf colour in rice (Oryza sativa). BMC Plant Biol 16:232–242CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Rongjian Luo
    • 1
  • Hanwei Jiang
    • 1
    • 2
  • Yusong Lv
    • 1
  • Shikai Hu
    • 1
  • Zhonghua Sheng
    • 1
  • Gaoneng Shao
    • 1
  • Shaoqing Tang
    • 1
  • Peisong Hu
    • 1
  • Xiangjin Wei
    • 1
  1. 1.State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouPeople’s Republic of China
  2. 2.College of Life and Environmental SciencesHangzhou Normal UniversityHangzhouPeople’s Republic of China

Personalised recommendations