Plant Molecular Biology Reporter

, Volume 36, Issue 3, pp 491–499 | Cite as

Ribosomal Heterogeneity of Maize Tissues: Insights of Biological Relevance

  • Ricardo A Hernández-Hermenegildo
  • Lilia Bernal
  • Laura V Jiménez-Pérez
  • Irma Bernal-Lugo
  • Estela Sánchez de JiménezEmail author
Original Paper


In recent years, the selective role of ribosomes in the translational process of eukaryotes has been suggested. Evidence indicates that ribosomal heterogeneity at the level of protein stoichiometry and phosphorylation status differs among organisms, suggesting ribosomal specialization according to the state of development and the surrounding environment. During germination, protein synthesis is an active process that begins with the translation of the mRNAs stored in quiescent seeds and continues with the newly synthesized mRNAs. In this study, we identified differences in the abundance of ribosomal proteins (RPs) in maize embryos at different developmental stages. The relative quantification of RPs during germination revealed changes in six small subunit proteins, S3 (uS3), S5 (uS7), S7 (eS7), two isoforms of S17 (eS17), and S18 (uS13), and nine large subunit proteins, L1 (uL1), L5 (uL18), two isoforms of P0 (uL10), L11 (uL5), L14 (eL14), L15 (eL15), L19 (eL19), and L27 (eL27). Further analysis of ribosomal protein phosphorylation during germination revealed that the phosphorylation of PRP0 (uL10) and P1 increased and that of PRS3 (uS3) decreased in germinated versus quiescent embryos. The addition of insulin during germination increased the phosphorylation of the P1 protein, suggesting that its phosphorylation is controlled by the TOR pathway. Our results indicate that a heterogeneous ribosomal population provides to maize ribosomes during germination a different ability to translate mRNAs, suggesting another level of regulation by the ribosomes.


Ribosomes Ribosomal protein heterogeneity Ribosomal protein phosphorylation 



We thank Dr. Verónica Garrocho-Villegas for her comments to improve the manuscript; also, we wish to thank Biol. Jorge Herrera and Q. Margarita Guzmán from Unidad de Servicio de Apoyo a la Investigación y a la Industria for their support in mass spectrometry analysis and protein identification.

Funding Information

This research was supported by Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México (DGAPA-UNAM), project PAPIIT IN214214.

Supplementary material

11105_2018_1080_Fig4_ESM.png (297 kb)
Online resource 1

(PNG 296 kb)

11105_2018_1080_MOESM1_ESM.tiff (1 mb)
High Resolution Image (TIFF 1067 kb)
11105_2018_1080_Fig5_ESM.png (4.7 mb)
Online resource 2

(PNG 4.74 mb

11105_2018_1080_MOESM2_ESM.tiff (1.8 mb)
High Resolution Image (TIFF 1858 kb)
11105_2018_1080_Fig6_ESM.png (2.3 mb)
Online resource 3

PD Quest analysis of the selected proteins in 2D electrophoresis. The numbers identify each spot on the gel (PNG 2.33 mb)

11105_2018_1080_MOESM3_ESM.tiff (941 kb)
High Resolution Image (TIFF 941 kb)


  1. Agrawal G, Thelen JJ (2009) A high-resolution two dimensional gel- and Pro-Q DPS-based proteomics workflow for phosphoprotein identification and quantitative profiling. Methods Mol Biol 527:3–19CrossRefPubMedGoogle Scholar
  2. Ban N, Beckmann R, Cate JH, Dinman JD, Dragon F, Ellis SR, Lafontaine DL, Lindahl L, Liljas A, Lipton JM, McAlear MA, Moore PB, Noller HF, Ortega J, Panse VG, Ramakrishnan V, Spahn CM, Steitz TA, Tchorzewski M, Tollervey D, Warren AJ, Williamson JR, Wilson D, Yonath A, Yusupov M (2014) A new system for naming ribosomal protein. Curr Opin Struct Biol 24:165–169CrossRefPubMedPubMedCentralGoogle Scholar
  3. Barret AJ, Waterworth WM, West CE (2015) Roles of DNA repair pathways in maintenance of seed viability and vigour. Asp Appl Biol 124:15–19Google Scholar
  4. Beltrán E, Ortíz A, Sánchez de Jiménez E (1995) Synthesis of ribosomal proteins from stored mRNAs early in seed germination. Plant Mol Biol 28:327–336CrossRefGoogle Scholar
  5. Beltran-Peña E, Aguilar R, Ortiz-Lopez A, Dinkova TD, Sánchez de Jimenez E (2002) Auxin stimulates S6 ribosomal protein phosphorylation in maize thereby affecting protein synthesis regulation. Physiol Plant 115:291–297CrossRefPubMedGoogle Scholar
  6. Boex-Fontvieille E, Daventure M, Jossier M, Zivy M, Hodges M, Tcherkez G (2013) Photosynthetic control of Arabidopsis leaf cytoplasmic translation initiation by protein phosphorylation. PLoS One 8:e70692CrossRefPubMedPubMedCentralGoogle Scholar
  7. Byrne ME (2009) A role for the ribosome in development. Trends Plant Sci 14:512–519CrossRefPubMedGoogle Scholar
  8. Carroll AJ, Heazlewood JL, Ito J, Millar AH (2008) Analysis of the Arabidopsis cytosolic ribosome proteome provides detailed insights into its components and their post-translational modification. Mol Cell Proteomics 7:347–369CrossRefPubMedGoogle Scholar
  9. Davies E, Abe S (1995) Methods for isolation and analysis of polyribosomes. Methods Cell Biol 50:209–222CrossRefPubMedGoogle Scholar
  10. Degenhardt RF, Bonham-Smith PC (2008) Arabidopsis ribosomal proteins RPL23aA and RPL23aB are differentially targeted to the nucleolus and are disparately required for normal development. Plant Physiol 147:128–142CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dinkova TD, Reyes de la Cruz H, García-Flores C, Aguilar R, Jiménez-García LF, Sánchez de Jiménez E (2007) Dissecting the TOR-S6K signal transduction pathway in maize seedlings: relevance on cell growth regulation. Physiol Plant 130:1–10CrossRefGoogle Scholar
  12. Dobrenel T, Mancera-Martínez E, Forzani C, Azzopardi M, Davanture M, Moreau M, Schepetilnikov M, Chicher J, Langella O, Zivy M, Robaglia C, Ryabova LA, Hanson J, Meyer C (2016) The Arabidopsis TOR kinase specifically regulates the expression of nuclear genes coding for plastidic ribosomal proteins and the phosphorylation of the cytosolic ribosomal protein S6. Front Plant Sci 7:1611CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dong J, Aitken CE, Thakur A, Shin BS, Lorsch JR, Hinnebusch AG (2017) Rps3/uS3 promotes mRNA binding at the 40S ribosome entry channel and stabilizes preinitiation complexes at start codons. Proc Natl Acad Sci U S A 114:E2126–E2135CrossRefPubMedPubMedCentralGoogle Scholar
  14. Francisco-Velilla R, Remacha M, Ballesta JP (2013) Carboxy terminal modifications of the P0 protein reveal alternative mechanisms of nuclear ribosomal stalk assembly. Nucleic Acids Res 41:8628–8636CrossRefPubMedPubMedCentralGoogle Scholar
  15. Garrocho-Villegas V, Aguilar R, Sánchez de Jiménez E (2013) Insights into the TOR-S6K signaling pathway in maize (Zea mays L.). Pathway activation by effector-receptor interaction. Biochemistry 52:9129–9140CrossRefPubMedGoogle Scholar
  16. Gilbert W (2011) Functional specialization of ribosomes? Trends Biochem Sci 36:127–132CrossRefPubMedPubMedCentralGoogle Scholar
  17. Graifer D, Karpova G (2015) Interaction of tRNA with eukaryotic ribosome. Int J Mol Sci 16:7173–7194CrossRefPubMedPubMedCentralGoogle Scholar
  18. Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell 12:9–22CrossRefPubMedGoogle Scholar
  19. Huang H, Møller IM, Song SQ (2012) Proteomics of desiccation tolerance during development and germination of maize embryos. J Proteome 75:1247–1262CrossRefGoogle Scholar
  20. Hummel M, Cordewener JH, de Groot JC, Smeekens S, America AH, Hanson J (2012) Dinamic protein composition of Arabidopsis thaliana cytosolic ribosomes in response to sucrose feeding as revealed by label free MSE proteomics. Proteomicss 12:1024–1038CrossRefGoogle Scholar
  21. Hummel M, Dobrenel T, Cordewener JJ, Davanture M, Meyer C, Smeekens SJ, Bailey-Serres J, America TA, Hanson J (2015) Proteomic LC-MS analysis of Arabidopsis cytosolic ribosomes: identification of ribosomal protein paralogs and re-annotation of the ribosomal protein genes. J Proteome 128:436–449CrossRefGoogle Scholar
  22. Jiménez-López S, Mancera-Martínez E, Donayre-Torres A, Rangel C, Uribe L, March S, Jiménez-Sánchez G, Sánchez de Jiménez E (2011) Expression profile of maize embryonic axes during germination: translational regulation of ribosomal protein mRNAs. Plant Cell Physiol 52:1719–1733CrossRefPubMedGoogle Scholar
  23. Krokowski D, Boguszewska A, Abramczyk D, Liljas A, Tchórzewski M, Grankowski N (2006) Yeast ribosomal P0 protein has two separate binding sites for P1/P2 proteins. Mol Microbiol 60:386–400CrossRefPubMedGoogle Scholar
  24. Lee SB, Kwon IS, Park J, Lee KH, Ahn Y, Lee C, Kim J, Choi SY, Cho SW, Ahn JY (2010) Ribosomal protein S3, a new substrate of Akt, serves as a signal mediator between neuronal apoptosis and DNA repair. J Biol Chem 285:29457–29468CrossRefPubMedPubMedCentralGoogle Scholar
  25. Mauro V, Edelman G (2002) The ribosome filter hypothesis. Proc Natl Acad Sci U S A 99:12031–12036CrossRefPubMedPubMedCentralGoogle Scholar
  26. Meskauskas A, Petrov AN, Dinman JD (2005) Identification of functionally important amino acids of ribosomal protein L3 by saturation mutagenesis. Mol Cell Biol 25:10863–10874CrossRefPubMedPubMedCentralGoogle Scholar
  27. Muench D, Zhang C, Dahodwala M (2012) Control of cytoplasmic translation in plants. RNA 3:178–194PubMedGoogle Scholar
  28. Qiu D, Parada P, García A, Cárdenas D, Remacha M, Ballesta JP (2006) Different roles of P1 and P2 Saccharomyces cerevisiae ribosomal stalk proteins revealed by cross-linking. Mol Microbiol 62(4):1191–1202CrossRefPubMedGoogle Scholar
  29. Rabl J, Leibundgut M, Ataide SF, Haag A, Ban N (2011) Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1. Science 331:730–736CrossRefPubMedGoogle Scholar
  30. Reinbothe C, Pollmann S, Reinbothe S (2010) Singlet oxygen signaling links photosynthesis to translation and plant growth. Trends Plant Sci 15:499–506CrossRefPubMedGoogle Scholar
  31. Ruvinsky I, Sharon N, Lerer T, Cohen H, Stolovich-Rain M, Nir T, Dor Y, Zisman P, Meyuhas O (2005) Ribosomal protein S6 phosphorylation is a determinant of cell size glucose homeostasis. Genes Dev 19:2199–2211CrossRefPubMedPubMedCentralGoogle Scholar
  32. Schippers JHM, Mueller-Roeber B (2010) Ribosomal composition and control of leaf development. Plant Sci 179:307–315CrossRefGoogle Scholar
  33. Schulze WX (2010) Proteomics approaches to understand protein phosphorylation in pathway modulation. Curr Opin Plant Biol 13:280–287CrossRefPubMedGoogle Scholar
  34. Szick-Miranda K, Bailey-Serres J (2001) Regulated heterogeneity in 12-kDa P-protein phosphorylation and composition of ribosomes in maize (Zea mays L.). J Biol Chem 276:10921–10928CrossRefPubMedGoogle Scholar
  35. Turkina M, Klang A, Vener A (2011) Differential phosphorylation of ribosomal proteins in Arabidopsis thaliana plants during day and night. Plos One 6:e29307CrossRefPubMedPubMedCentralGoogle Scholar
  36. Villa J, Dinkova T, Aguilar R, Rivera F, Sánchez de Jiménez E, Pérez-Flores LJ (2013) Regulation of ribosome biogenesis in maize embryonic axes during germination. Biochimie 95:1871–1879CrossRefGoogle Scholar
  37. Visweswaraiah J, Hinnebusch AG (2017) Interface between 40S exit channel protein uS7/Rps5 and eIF2α modulates start codon recognition in vivo. elife 6:e22572. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Visweswaraiah J, Pittman Y, Dever TE, Hinnebusch AG (2015) The β-hairpin of 40S exit channel protein Rps5/uS7 promotes efficient and accurate translation initiation in vivo. elife 4:e07939. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Warner JR, Gorenstein C (1977) The synthesis of eucaryotic ribosomal proteins in vitro. Cell 11:201–212CrossRefPubMedGoogle Scholar
  40. Weijers D, Franke-van Dijk M, Vencken RJ, Quint A, Hooykaas P, Offringa R (2001) An Arabidopsis minute-like phenotype caused by a semi-dominant mutation in a ribosomal protein S5 gene. Development 128:4289–4299PubMedGoogle Scholar
  41. Williams ME, Sussex IM (1995) Developmental regulation of ribosomal protein L16 genes in Arabidopsis thaliana. Plant J 8:65–76CrossRefPubMedGoogle Scholar
  42. Williams AJ, Werner-Fraczek J, Chang IF, Bailey-Serres J (2003) Regulated phosphorylation of 40S ribosomal protein S6 in root tips of maize. Plant Physiol 132:2086–2097CrossRefPubMedPubMedCentralGoogle Scholar
  43. Xue S, Barna M (2012) Specialized ribosomes: a new frontier in gene regulation and organismal biology. Nat Rev Mol Cell Biol 13:355–369CrossRefPubMedPubMedCentralGoogle Scholar
  44. Yadavilli S, Hegde V, Deutsch W (2007) Translocation of human ribosomal protein S3 to sites of DNA damage is dependent on ERK-mediated phosphorylation following genotoxic stress. DNA Repair 6:1453–1462CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Bioquímica, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico

Personalised recommendations