Plant Molecular Biology Reporter

, Volume 35, Issue 6, pp 600–610 | Cite as

Miscanthus sp.: Genetic Diversity and Phylogeny in China

  • Chunxia Ge
  • Xiuming Liu
  • Shimin Liu
  • Jing Xu
  • Hongfei Li
  • Tengteng Cui
  • Yao Yao
  • Ming Chen
  • Weili Yu
  • Cuixia ChenEmail author
Original Paper


Miscanthus genetic resources are widely distributed throughout China. However, genetic studies on Miscanthus lagged far behind other crops (e.g., sorghum, maize). To establish the comprehensive genetics knowledge of Miscnathus in China, here we report the genetic and phylogenetic diversity of 174 domestic Miscanthus accessions, along with an external Miscanthus × giganteus control. Cytological observations and flow cytometry analyses indicated that there were two major Miscanthus cytotypes in China: diploid (86.86%) and tetraploid (12.57%) without triploid. A total of 108 polymorphic loci generated from 25 SSR primers were used to evaluate the genetic variation. Large variations in genetic similarity coefficients (GSCs), ranging from 0.08 to 0.97 with a mean value of 0.39, were observed between these Miscanthus accessions. Our phylogenetic data revealed that these accessions were clustered into four main clades: M. section Miscanthus, M. section Diandranthus, M. section Triarrhena, and hybrids. The average percentage of polymorphic loci (P), gene diversity (H), and Shannon’s diversity index (I) among Miscanthus species are 70.93%, 0.22, and 0.34, respectively. These were consistent with the analysis of molecular variance (AMOVA) results, showing that 85% of genetic variation was found within clades. This study investigated the clear phylogenetic relationship of Miscanthus species in China, which will be valuable for further utilization of the germplasm in genetic improvement and hybrid breeding of Miscanthus.


Miscanthus Cytotype Genetic diversity Molecular phylogeny SSR polymorphisms 



This work was supported by the National Natural Sciences Foundation of China (31271352 and 31071471) and the Department of Science and Technology of Shandong province (2013GNC11102). We thank Dr. Ji-Ping Zhao (USA) and Dr. Yanyan Wang (Associate Professor in University of Illinois, College of Medicine at Urbana-Champaign) for their English improvement and constructive comments on this manuscript.

Supplementary material

11105_2017_1048_MOESM1_ESM.xlsx (41 kb)
ESM 1 (XLSX 40 kb)


  1. Barling A, Swaminathan K, Mitros T, James BT, Morris J, Ngamboma O, Hall MC, Kirkpatrick J, Alabady M, Spence AK, Hudson ME, Rokhsar DS, Moose SP (2013) A detailed gene expression study of the Miscanthus genus reveals changes in the transcriptome associated with the rejuvenation of spring rhizomes. BMC Genomics 14:864. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Blanc G, Wolfe KH (2004) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16:1679–1691. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Chae WB, Hong SJ, Gifford JM, Rayburn AL, Sacks EJ, Juvik JA (2014) Plant morphology genome size and SSR markers differentiate five distinct taxonomic groups among accessions in the genus Miscanthus. GCB Bioenergy 6:646–660. CrossRefGoogle Scholar
  4. Chen SL, Renvoize SA (2006) Miscanthus. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, science press, Beijing, China. Missouri Botanical Garden Press, St Louis, pp 581–583Google Scholar
  5. Chou CH (2009) Miscanthus plants used as an alternative biofuel material: the basic studies on ecology and molecular evolution. Renew Energy 34:1908–1912. CrossRefGoogle Scholar
  6. Christian DG, Riche AB, Yates NE (2008) Growth yield and mineral content of Miscanthus giganteus grown as a biofuel for 14 successive harvests. Ind Crop Prod 28:320–327CrossRefGoogle Scholar
  7. Clark LV, Brummer JE, Głowacka K, Hall MC, Heo K, Peng JH, Yamada T, Yoo JH, Yu CY, Zhao H, Long SP, Sacks EJ (2014) A footprint of past climate change on the diversity and population structure of Miscanthus sinensis. Ann Bot 114:97–107. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cosentino SL, Copani V, Foti S, Patane C, Sanzone E (2007) Effects of soil water content and nitrogen supply on the productivity of Miscanthus ×giganteus Greef et Deu in a Mediterranean environment. Ind Crop Prod 25:5–88. CrossRefGoogle Scholar
  9. Danalatos NG, Archontoulis SV, Mitsios I (2007) Potential growth and biomass productivity of Miscanthus × giganteus as affected by plant density and N-fertilization in central Greece. Biomass Bioenergy 31:145–152. CrossRefGoogle Scholar
  10. Doležel J, Greilhuber J, Lucretti S, Meister A, Lysák MA, Nardi L, Obermayer R (1998) Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann Bot 82:17–26. Google Scholar
  11. Gaut BS, Doebley JF (1997) DNA sequence evidence for the segmental Allotetraploid origin of maize. Proc Natl Acad Sci 94:6809–6814. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Głowacka K, Clark LV, Adhikari S, Peng J, Stewart JR, Nishiwaki A, Yamada T, Jorgensen U, Hodkinson TR, Gifford J, Juvik J, Sacks EJ (2015) Genetic variation in Miscanthus × giganteus and the importance of estimating genetic distance thresholds for differentiating clones. GCB Bioenergy 7:386–404. CrossRefGoogle Scholar
  13. Heaton E, Dohleman FG, Long SP (2008) Meeting US biofuel goals with less land: the potential of Miscanthus. Glob Chang Biol 14:2000–2014. CrossRefGoogle Scholar
  14. Hodkinson TR, Chase MW, Renvoize SA (2002a) Characterization of a genetic resource collection for Miscanthus (Saccharinae Andropogoneae Poaceae) using AFLP and ISSR PCR. Ann Bot 89:627–636. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hodkinson TR, Chase MW, Lledó MD, Salamin N, Renvoize SA (2002b) Phylogenetics of Miscanthus Saccharum and related genera (Saccharinae Andropogoneae Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL intron and trnL-F intergenic spacers. J Plant Res 115:381–392. CrossRefPubMedGoogle Scholar
  16. Hodkinson TR, Chase MW, Takahashi C, Leitch IH, Bennett MD, Renvoize SA (2002c) The use of DNA sequencing (ITS AND TRNL-F) AFLP and fluorescent in situ hybridization to study allopolyploid Miscanthus (Poaceae). Am J Bot 89:279–286. CrossRefPubMedGoogle Scholar
  17. Huang CL, Ho CW, Chiang YC, Shigemoto Y, Hsu TW, Hwang CC, Ge XJ, Chen C, Wu TH, Chou CH, Huang HJ, Gojobori T, Osada N, Chiang TY (2014) Adaptive divergence with gene flow in incipient speciation of Miscanthus floridulus/sinensis complex (Poaceae). Plant J 80:834–847. CrossRefPubMedGoogle Scholar
  18. Kim S, Rayburn AL, Lee DK (2010) Genome size and chromosome analyses in prairie cordgrass. Crop Sci 50:2277–2282. CrossRefGoogle Scholar
  19. Kim C, Lee TH, Guo H, Chung SJ, Paterson AH, Kim DS, Lee GJ (2014a) Sequencing of transcriptomes from two Miscanthus species reveals functional specificity in rhizomes and clarifies evolutionary relationships. BMC Plant Biol 14:57–60. CrossRefGoogle Scholar
  20. Kim C, Wang X, Lee TH, Jakob K, Lee GJ, Paterson AH (2014b) Comparative analysis of Miscanthus and Saccharum reveals a shared whole-genome duplication but different evolutionary fates. Plant Cell 26:2420–2429. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Lafferty J, Lelley T (1994) Cytogenetic studies of different Miscanthus species with potential for agricultural use. Plant Breed 113:246–249CrossRefGoogle Scholar
  22. Lewandowski I, Schmidt U (2006) Nitrogen, energy and land use efficiencies of Miscanthus, reed canary grass and triticale as determined by the boundary line approach. Agric Ecosyst Environ 112:335–346. CrossRefGoogle Scholar
  23. Li X, Hu D, Luo M, Zhu M, Li X, Luo F, Li JQ, Yan J (2013) Nuclear DNA content variation of three Miscanthus species in china. Genes Genom 35:13–20. CrossRefGoogle Scholar
  24. Linde-Laursen I (1993) Cytogenetic analysis of MiscanthusGiganteus’ an interspecific hybrid. Hereditas 119:297–300. CrossRefGoogle Scholar
  25. Ma X-F, Jensen E, Alexandrov N, Troukhan M, Zhang L, Thomas-Jones S, Farrar K, Clifton-Brown J, Donnison I, Swaller T, Flavell R (2012) High resolution genetic mapping by genome sequencing reveals genome duplication and tetraploid genetic structure of the diploid Miscanthus sinensis. PLoS One 7:e33821. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Mallet J (2007) Hybrid speciation. Nature 446:279–283. CrossRefPubMedGoogle Scholar
  27. Moon YH, Cha YL, Choi YH, Yoon YM, Koo BC, Ahn JW, An GH, Kim JK, Park KG (2013) Diversity in ploidy levels and nuclear DNA amounts in Korean Miscanthus species. Euphytica 193:317–326. CrossRefGoogle Scholar
  28. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590PubMedPubMedCentralGoogle Scholar
  29. Nie G, Zhang XQ, Huang LK, Xu WZ, Wang JP, Zhang YW, Ma X, Yan YH, Yan HD (2014) Genetic variability and population structure of the potential bioenergy crop Miscanthus sinensis (Poaceae) in southwest China based on SRAP markers. Molecules 19:12881–12897. CrossRefPubMedGoogle Scholar
  30. Peakall R, Smouse PE (2012) GenAlEx 65: genetic analysis in excel population genetic software for teaching and research - an update. Bioinformatics 28:2537–2539CrossRefPubMedPubMedCentralGoogle Scholar
  31. Qin Y, Kabirm A, Wangh W, Leey H, Hongs H, Kimj Y, Yook MJ, Kim DS, Kim C, Kwon H, Kim W (2013) Assessment of genetic diversity and relationships based on RAPD and AFLP analyses in Miscanthus genera landraces. Can J Plant Sci 93:171–182. CrossRefGoogle Scholar
  32. Rayburn AL, Crawford J, Rayburn CM, Juvik JA (2009) Genome size of three Miscanthus species. Plant Mol Biol Report 27:184–188. CrossRefGoogle Scholar
  33. Renny-Byfield S, Ainouche M, Leitch IJ, Lim KY, Comber SCL, Leitch AR (2010) Flow cytometry and GISH reveal mixed ploidy populations and Spartina nonaploids with genomes of S. alterniflora and S. maritima origin. Ann Bot 105:527–533. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Rohlf FJ (2000) NTSYS-pc: numerical taxonomy and multivariate analysis system, 2.1 edn. Applied Biostatistics, New YorkGoogle Scholar
  35. Sang T, Zhu W (2010) China’s bioenergy potential. GCB Bioenergy 3:79–90. CrossRefGoogle Scholar
  36. Shimono Y, Kurokawa S, Nishida T, Ikeda H, Futagami N (2013) Phylogeography based on intraspecific sequence variation in chloroplast DNA of Miscanthus sinensis (Poaceae) a native pioneer grass in Japan. Botany 91:449–456. CrossRefGoogle Scholar
  37. Slavov G, Robson P, Jensen E, Hodgson E, Farrar K, Allison G, Hawkins S, Thomas-Jones S, Ma XF, Huang L, Swaller T, Flavell R, Clifton-Brown J, Donnison I (2013) Contrasting geographic patterns of genetic variation for molecular markers vs phenotypic traits in the energy grass Miscanthus sinensis. GCB Bioenergy 5:562–571. CrossRefGoogle Scholar
  38. Smith JSC, Chin ECL, Shu H, Smith OS, Wall SJ, Senior ML, Mitchell SE, Kresovich S, Ziegle J (1997) An evaluation of the utility of SSR loci as molecular markers in maize (Zea Mays L): comparisons with data from RFLPs and pedigree. Theor Appl Genet 95:163–173. CrossRefGoogle Scholar
  39. Sun Q, Lin Q, Yi Z, Yang Z, Zhou F (2010) A taxonomic revision of Miscanthus sl (Poaceae) from China. Bot J Linn Soc 164:178–220. CrossRefGoogle Scholar
  40. Swaminathan K, Chae WB, Mitros T, Varala K, Xie L, Barling A, Glowacka K, Hall M, Jezowski S, Ming R, Hudson M, Juvik JA, Rokhsar DS, Moose SP (2012) A framework genetic map for Miscanthus sinensis from RNAseq-based markers shows recent tetraploidy. BMC Genomics 13:142–158. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Swigonova Z (2004) On the tetraploid origin of the maize genome. Comp Funct Genomics 5:281–284. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Tang J, Daroch M, Kilian A, Jeżowski S, Pogrzeba M, Mos M (2015) DArT-based characterisation of genetic diversity in a Miscanthus collection from poland. Planta 242:985–996. CrossRefPubMedGoogle Scholar
  43. Wright S (1965) The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19:295–420CrossRefGoogle Scholar
  44. Xu WZ, Zhang XQ, Huang LK, Nie G, Wang JP (2013) Higher genetic diversity and gene flow in wild populations of Miscanthus sinensis in southwest China. Biochem Syst Ecol 48:174–181. CrossRefGoogle Scholar
  45. Yan J, Chen W, Luo F, Ma H, Meng A, Li X, Zhu M, Li S, Zhou M, Zhu W, Han B, Song G, Li J, Sang T (2012) Variability and adaptability of Miscanthus species evaluated for energy crop domestication. GCB Bioenergy 4:49–60. CrossRefGoogle Scholar
  46. Yook MJ, Lim SH, Song JS, Kim JW, Zhang CJ, Lee EJ, Ibaragi Y, Lee GJ, Nah G, Kim DS (2014) Assessment of genetic diversity of korean Miscanthus using morphological traits and SSR markers. Biomass Bioenergy 66:81–92. CrossRefGoogle Scholar
  47. Zhang QX, Shen YK, Shao RX, Fang J, He YQ, Ren JX, Zheng BS, Chen GJ (2013) Genetic diversity of natural Miscanthus sinensis populations in China revealed by ISSR markers. Biochem Syst Ecol 48:248–256. CrossRefGoogle Scholar
  48. Zhao H, Wang B, He J, Yang J, Pan L, Sun D, Peng J (2013) Genetic diversity and population structure of Miscanthus sinensis germplasm in China. PLoS One 8:e75672. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Chunxia Ge
    • 1
  • Xiuming Liu
    • 1
  • Shimin Liu
    • 1
  • Jing Xu
    • 1
  • Hongfei Li
    • 1
  • Tengteng Cui
    • 1
  • Yao Yao
    • 1
  • Ming Chen
    • 1
  • Weili Yu
    • 2
  • Cuixia Chen
    • 1
    Email author
  1. 1.State Key Laboratory of Crop Biology, College of AgronomyShandong Agricultural UniversityTai’ anChina
  2. 2.Taishan UniversityTai’ anChina

Personalised recommendations