Advertisement

Plant Molecular Biology Reporter

, Volume 33, Issue 6, pp 2014–2029 | Cite as

Comparative Characterization of Ribosomal DNA Regions in Different Agave Accessions with Economical Importance

  • Y. J. Tamayo-Ordóñez
  • J. A. Narváez-Zapata
  • L. F. Sánchez-Teyer
Original Paper

Abstract

Two ribosomal DNA regions (5S and 18S) were characterized in three economically important species of Agave Linnaeus, 1753 namely Agave tequilana Weber, 1902; Agave angustifolia Haworth, 1915; and Agave fourcroydes Lemaire, 1864 which are used to produce several products such as tequila, mezcal, and hard fibers. Characterization included Agave L. accessions with different ploidy levels (2n = 2x = 60 to 2n = 6 × = 180) in order to relate this factor with copy number, haplotype number, expression profile, and predictable functionality of ribosomal DNA (rDNA) sequences. Only total rDNA copy number (5S and 18S) was related with ploidy level. Main differences were found in the 5S rDNA gene since it exhibited different genetic traits of Agave L. accession. In this gene, four different allelic groups (I, 105; II, 107; III, 110; and IV, 111 bp) were detected, which have probably evolved separately, thus exhibiting different expression profiles and different haplotype occurrence. Allelic groups III and IV exhibit the highest number of total and expressed copies in all Agave L. accessions. Non-redundant haplotypes were probably more functional in these allelic groups. Differences between the Agave L. accessions were more clearly observed in the most cultivated accession, A. tequilana (2n = 2 × = 60), where the allelic group III shows non-redundant haplotypes and is transcriptionally upregulated suggesting a different evolutionary pressure on this Agave L. accession.

Keywords

DNA ribosomal Agave Variability Polyploidy Agavaceae Haplotypes Functional rDNA 

Notes

Acknowledgments

The authors express their gratitude to María Concepción Tamayo Ordóñez, PhD, for her critical revision of the MS and Adriana Quiroz Moreno MC for her technical assistance. This project was supported by the National Council of Science and Technology of Mexico by the projects 50268 and 180757 and the fellow (240190) for the first author.

Supplementary material

11105_2015_895_Fig7_ESM.gif (468 kb)
Supplementary Figure A

(1) 5S rDNA primer localization for different sequences obtained from Genbank. Accession numbers are JN051136, JX975658, AY544252, HQ270935, U02637, EF071653, EU093377, EU925062, FJ882491, AJ390208, DQ351339 and EF071691 for Elymus sibiricus L., Lycoris radiate L’Hér., Hordeum chilense Roem. et Schultz, Aegilops ventricosa Tausch, Eleusine coracana Gaertner, Avena occidentalis L., Pseudoroegneria spicata Pursh, Aegilop scomosa L., Triticum turgidum L., Helictotrichon versicolor Schult. & Schult. f., Zea mays L. and Avena sativa L., respectively. (2) 18S rDNA primer localization concerning to different sequences obtained from Genbank. Accession numbers are HM640709, JQ283933, JQ283917, JQ283914, AF206841, JQ283900 and GU980213 for Agave ghiesbreghtii Lem., Echeandia sp., Sansevieria trifasciata Prain, Liriope spicata, Agave ghiesbreghtii Lem., Asparagus officinalis and Agave tequilana cultivar Azul, respectively. (3) Actin gene primer localization for different sequences obtained from Genbank. Accession numbers are AY550991, JX826390, HQ148720, NM001153459, HQ395760, AF237626, AK101613, AY014278, JX310699, AK365182, FP099325 and GQ983555 for Elaeis guineensis Jacq, Lilium regale L., Ananas comosus L., Zea mays L., Echinochloa crus-galli L., Vallisneria natans L., Oryza sativa L., Lolium perenne L., Narcissus tazetta L., Hordeum vulgare L, Phyllostachys edulis and Agave tequilana Weber cultivar Azul, respectively. (GIF 468 kb)

11105_2015_895_MOESM1_ESM.tif (21.2 mb)
High Resolution Image (TIFF 21705 kb)
11105_2015_895_Fig8_ESM.gif (121 kb)
Supplementary Figure B

Polymorphisms in (1) 5S and 18S (2) rDNA haplotypes. Polymorphism positions are showed according to closest genetic related sequences retrieved from Genbank for 5S (Triticum turgidum; FJ882491) and 18S (Agave tequilana; GU980213) rDNA genes, respectively (GIF 120 kb)

11105_2015_895_MOESM2_ESM.tif (157 kb)
High Resolution Image (TIFF 156 kb)
11105_2015_895_Fig9_ESM.gif (63 kb)
Supplementary Figure C

Examples of electropherograms obtained from different Agave accessions using 18S rDNA PCR products. (1) A. tequilana Weber (2n=2x=60), (2) A. angustifolia Ham. (2n=2x=60), (3) A. angustifolia Ham. (2n=6x=180), (4) A. fourcroydes Lem. (2n=3x=90) and (5) A. fourcroydes Lem. (2n=5x=150). Allelic peak numbered as 1 was about 187 bp. (GIF 62 kb)

11105_2015_895_MOESM3_ESM.tif (152 kb)
High Resolution Image (TIFF 152 kb)
11105_2015_895_Fig10_ESM.gif (58 kb)
Supplementary Figure D

5S rDNA copies analysis. Specific 5S rDNA copies per genome for each detected peak in capillary analysis. Error bars represent the standard error (n = 3). Different letters in the bars represent the statistical significance of mean differences between each allelic group in the accessions of Agave L. determination according to the Tukey test (P ≤ 0.05). (GIF 57 kb)

11105_2015_895_MOESM4_ESM.tif (158 kb)
High Resolution Image (TIFF 157 kb)
11105_2015_895_MOESM5_ESM.docx (17 kb)
Supplementary Table A (DOCX 16 kb)
11105_2015_895_MOESM6_ESM.docx (16 kb)
Supplementary Table B (DOCX 15 kb)

References

  1. Arnheim N, Krystal M, Schmickel R, Wilson G, Ryder O, Zimmer E (1980) Molecular evidence for genetic exchanges among ribosomal genes on nonhomologous chromosomes in man and apes. Proc Natl Acad Sci U S A 77:7323–7327. doi: 10.1073/pnas.77.12.7323 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218. doi: 10.1007/bf02672069 CrossRefGoogle Scholar
  3. Bailey DC, Carr TG, Harris SA, Hughes CE (2003) Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes. Mol Phylogenet Evol 29:435–455. doi: 10.1016/j.ympev.2003.08.021 PubMedCrossRefGoogle Scholar
  4. Baldwin BG, Sanderson MJ, Porter JM, Wojciechowski MF, Campbell CS, Donoghue MJ (1995) The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann Mo Bot Gard 82:247–277. doi: 10.2307/2399880 CrossRefGoogle Scholar
  5. Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48. doi: 10.1093/oxfordjournals.molbev.a026036 PubMedCrossRefGoogle Scholar
  6. Barba-Gonzalez R, Gomez-Rodriguez V, Rodriguez-Garay B, Palomino G, Martínez J (2013) Physical mapping of 5S and 18S ribosomal DNA in three species of Agave (Asparagales, Asparagaceae). Comp Cytogenet 7(3):191–203. doi: 10.3897/compcytogen.v7i3.5337 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Barciszewska MZ, Szymański M, Erdmann VA, Barciszewski J (2000) 5S Ribosomal RNA. Biomacromolecules 1:297–302. doi: 10.1021/bm000293o PubMedCrossRefGoogle Scholar
  8. Becerra JX (2003) Evolution of Mexican Bursera (Burseraceae) inferred from ITS, ETS, and 5S nuclear ribosomal DNA sequences. Mol Phylogenet Evol 26:300–3009. doi: 10.1016/S1055-7903(02)00256-7 PubMedCrossRefGoogle Scholar
  9. Bottley A, Xia GM, Koebner RMD (2006) Homoeologous gene silencing in hexaploid wheat. Plant J 47:897–906. doi: 10.1111/j.1365-313X.2006.02841.x PubMedCrossRefGoogle Scholar
  10. Brandham PE (1969) Inversion heterozygosity and sub-chromatid exchange in Agave stricta. Chromosoma 26:270–286. doi: 10.1007/BF00326522 CrossRefGoogle Scholar
  11. Buckler ES, Ippolito A, Holtsford TP (1997) The evolution of ribosomal DNA: divergent paralogues and phylogenetic implications. Genetics 145:821–832PubMedGoogle Scholar
  12. Campo D, Machado-Schiaffino G, Horreo JL, Garcia-Vazquez E (2009) Molecular organization and evolution of 5S rDNA in the genus Merluccius and their phylogenic implications. J Mol Evol 68:208–216. doi: 10.1007/s00239-009-9207-8 PubMedCrossRefGoogle Scholar
  13. Castorena-Sánchez I, Escóbedo RM, Quiroz A (1991) New cytotaxonomical determinants recognized in six taxa of Agave in the sections Rigidae and Sisalanae. Can J Bot 69:1257–1264. doi: 10.1139/b91-163 CrossRefGoogle Scholar
  14. Cavallini A, Natali L, Cionini G, Castorena-Sánchez I (1995) Cytophotometric and biochemical analyses of DNA in pentaploid and diploid Agave species. Genome 39:266–271CrossRefGoogle Scholar
  15. Choquer M, Boccara M, Vidal-Cros A (2003) A semi-quantitative RT-PCR method to readily compare expression levels within Botrytis cinerea multigenic families in vitro and in planta. Curr Genet 43:303–9. doi: 10.1007/s00294-003-0397-0 PubMedCrossRefGoogle Scholar
  16. Colunga-GarcíaMarín P, May-Pat (1997) Morphological variation of Henequén germplasm and its wild ancestor under uniform growth conditions: diversity and domestication. Am J Bot 84:1449–1465PubMedCrossRefGoogle Scholar
  17. Colunga-GarcíaMarín P, Coello-Coello J, Eguiarte LE, Piñero D (1999) Isozymatic variation and phylogenetic relationships between henequén (Agave fourcroydes) and its wild ancestor A. angustifolia (Agavaceae). Am J Bot 86:115–123PubMedCrossRefGoogle Scholar
  18. Dadejová M, Lim KY, Soucková-Skalická K et al (2007) Transcription activity of rRNA genes correlates with a tendency towards intergenomic homogenization in Nicotiana allotetraploids. New Phytol 174:658–668. doi: 10.1111/j.1469-8137.2007.02034.x PubMedCrossRefGoogle Scholar
  19. Doughty LR (1936) Chromosome behaviour in relation to genetics of Agave. I. Seven species of fibre Agave. J Genet 33:198–205. doi: 10.1007/BF02982532 CrossRefGoogle Scholar
  20. Dover GA (1982) Molecular drive: a cohesive mode of species evolution. Nature 299:111–117. doi: 10.1038/299111a0 PubMedCrossRefGoogle Scholar
  21. Drouin G, Moniz de Sá M (1995) The concerted evolution of 5S ribosomal genes linked to the repeat units of other multigene families. Mol Biol Evol 12:481–493PubMedGoogle Scholar
  22. Dydak M, Kolano B, Nowak T, Siwinska D, Maluszynska J (2009) Cytogenetic studies of three European species of Centaurea L. (Asteraceae). Hereditas 146:152–161. doi: 10.1111/j.1601-5223.2009.02113.x PubMedCrossRefGoogle Scholar
  23. Echeverria-Machado I, Sánchez-Cach LA, Hernández-Zepeda C, Rivera-Madrid R, Moreno-Valenzuela OA (2005) A simple and efficient method for isolation of DNA in high mucilagenous plant tissues. Mol Biotechnol 31:129–135CrossRefGoogle Scholar
  24. Eguiarte LE, Silva Montellano A, Souza V (2000) Evolución de la familia Agavaceae: filogenia, biología reproductiva y genética de poblaciones. Bol Soc Bot Méx 66:131–151Google Scholar
  25. Eickbush TH, Eickbush DG (2007) Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics 175:477–485. doi: 10.1534/genetics.107.071399 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Feldman M, Liu B, Segal G, Abbo S, Levy AA, Vega JM (1997) Rapid elimination of low-copy DNA sequences in polyploidy wheat: a possible mechanism for differentiation of homoeologous chromosomes. Genetics 147:1381–1387PubMedPubMedCentralGoogle Scholar
  27. Flavell RB, O’Dell M, Thompson WF, Vincent MZ, Sardana R, Barker RF (1986) The differential expression of ribosomal RNA genes. Philos Trans R Soc B Biol Sci 314:385–397. doi: 10.1098/rstb.1986.0060 CrossRefGoogle Scholar
  28. French SL, Osheim NY, Cioci F, Nomura M, Beyer LA (2003) In exponentially growing Saccharomyces cerevisiae cells, rRNA synthesis is determined by the summed RNA polymerase I loading rate rather than by the number of active genes. Mol Cell Biol 23:1558–1568. doi: 10.1128/MCB.23.5.1558 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Fulnecek J, Lim KY, Leitch AR, Kovarik A, Matyasek R (2002) Evolution and structure of 5S rDNA loci in allotetraploid Nicotiana tabacum and its putative parental species. Heredity (Edinb) 88:19–25. doi: 10.1038/sj/hdy/6800001 CrossRefGoogle Scholar
  30. Gaeta RT, Yoo S-Y, Pires JC, Doerge RW, Chen ZJ, Osborn CT (2009) Analysis of gene expression in resynthesized Brassica napus allopolyploids using Arabidopsis 70mer oligo microarrays. PLoS One 4:e4760. doi: 10.1371/journal.pone.0004760 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Garcia S, Panero JL, Siroky J, Kovarik A (2010) Repeated reunions and splits feature the highly dynamic evolution of 5S and 35S ribosomal RNA genes (rDNA) in the Asteraceae family. BMC Plant Biol 10:176. doi: 10.1186/1471-2229-10-176 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Garcia S, Khaitová CL, Kovařík A (2012) Expression of 5 S rRNA genes linked to 35 S rDNA in plants, their epigenetic modification and regulatory element divergence. BMC Plant Biol 12:95. doi: 10.1186/1471-2229-12-95 PubMedPubMedCentralCrossRefGoogle Scholar
  33. García-Mendoza AJ (2007) Los agaves de México. Ciencias 087:14–23Google Scholar
  34. Gentry HS (1982) Agaves of continental North America. University of Arizona Press, Tucson, p 670Google Scholar
  35. Gil-Vega K, González M, Martínez de la Vega O, Simpson J, Vandemark G (2001) Analysis of genetic diversity in Agave tequilana var. Azul using RAPD markers. Euphytica 119:335–341CrossRefGoogle Scholar
  36. Gil-Vega K, Díaz C, Nava-Cedillo A, Simpson J (2006) AFLP analysis of Agave tequilana varieties. Plant Sci 170:904–909. doi: 10.1016/j.plantsci.2005.12.014 CrossRefGoogle Scholar
  37. Good-Avila SV, Souza V, Gaut BS, Eguiarte LE (2006) Timing and rate of speciation in Agave (Agavaceae). Proc Natl Acad Sci U S A 103:9124–9. doi: 10.1073/pnas.0603312103 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Granick EB (1944) A karyosystematic study of the genus Agave. Am J Bot 31:283–298CrossRefGoogle Scholar
  39. Greilhuber J, Dolezel J, Lysák MA, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms “genome size” and “C-value” to describe nuclear DNA contents. Ann Bot 95:255–60. doi: 10.1093/aob/mci019 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Gruber AR, Neuböck R, Hofacker IL, Washietl S (2007) The RNAz web server: prediction of thermodynamically stable and evolutionarily conserved RNA structures. Nucleic Acids Res 35:W335–8. doi: 10.1093/nar/gkm222 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hacquard S, Veneault-Fourrey C, Delaruelle C, Frey P, Martin F, Duplessis S (2011) Validation of Melampsora larici-populina reference genes for in planta RT-quantitative PCR expression profiling during time-course infection of poplar leaves. Physiol Mol Plant Pathol 75:106–112. doi: 10.1016/j.pmpp.2010.10.003 CrossRefGoogle Scholar
  42. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids 41:95–98Google Scholar
  43. Hartmann S, Nason JD, Bhattacharya D (2001) Extensive ribosomal DNA genic variation in the columnar cactus Lophocereus. J Mol Evol 53:124–34. doi: 10.1007/s002390010200 PubMedCrossRefGoogle Scholar
  44. Hawkes JG (1979) Evolution and polyploidy in potato species. En: the biology and taxonomy of the Solanaceae, (Ed.Hawkes, J.G). Linnean Soc Symp Ser 7:637–646Google Scholar
  45. Hillis DM, Dixon MT (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol 66:411–453PubMedCrossRefGoogle Scholar
  46. Hsiao C, Chatterton NJ, Asay KH, Jensen KB (1995) Phylogenetic relationship of the monogenomic species of the wheat tribe, Triticeae (Poaceae), inferred from nuclear rDNA (internal transcribed spacer) sequences. Genome 38:211–222. doi: 10.1139/g95-026 PubMedCrossRefGoogle Scholar
  47. Infante D, González G, Peraza-Echeverría L, Keb-LLanes M (2003) Asexual genetic variability in Agave fourcroydes. Plant Sci 164:223–230. doi: 10.1016/S0168-9452(02)00404-1 CrossRefGoogle Scholar
  48. Jefrey CZ, Pikaard CS (1997) Transcriptional analysis of nucleolar dominance in polyploidy plants: biased expression silencing of progenitor rRNA genes is developmentally regulated in Brassica (rDNA, nucleolus, RNA polymerase, gene silencing, epigenetic phenomena). Plant Biol 94:3442–3447Google Scholar
  49. Kashkush K, Feldman M, Levy A (2002) Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics 160:1651–1659PubMedPubMedCentralGoogle Scholar
  50. Khaitová L, Werlemark G, Nybom H, Kovarík A (2010) Frequent silencing of rDNA loci on the univalent-forming genomes contrasts with their stable expression on the bivalent-forming genomes in polyploid dogroses (Rosa sect. Caninae). Heredity (Edinb) 104:113–20. doi: 10.1038/hdy.2009.94 CrossRefGoogle Scholar
  51. Kovarik A, Dadejova M, Lim YK, Chase MW, Clarkson JJ, Knapp S, Leitch AR (2008) Evolution of rDNA in Nicotiana allopolyploids: a potential link between rDNA homogenization and epigenetics. Ann Bot 101:815–823. doi: 10.1093/aob/mcn019 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Levy AA, Feldman M (2004) Genetic and epigenetic reprogramming of the wheat genome upon allopolyploidization. Biol J Linn Soc 82:607–613. doi: 10.1111/j.1095-8312.2004.00346.x CrossRefGoogle Scholar
  53. Long EO, David IB (1980) Repeated genes in eukaryotes. Annu Rev Biochem 49:727–764PubMedCrossRefGoogle Scholar
  54. Magallón S, Sanderson MJ (2001) Absolute diversification rates in angiosperm clades. Evolution 55:1762–1780PubMedCrossRefGoogle Scholar
  55. Marmagne A, Brabant P, Thiellement H, Alix K (2010) Analysis of gene expression in resynthesized Brassica napus allotetraploids: transcriptional changes do not explain differential protein regulation. New Phytol 186:216–227. doi: 10.1111/j.1469-8137.2009.03139.x PubMedCrossRefGoogle Scholar
  56. Maroufi A, Van Bockstaele E, De Loose M (2010) Validation of reference genes for gene expression analysis in chicory (Cichorium intybus) using quantitative real-time PCR. BMC Mol Biol 11:15. doi: 10.1186/1471-2199-11-15 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Márquez LM, Miller DJ, MacKenzie JB, Van Oppen MJH (2003) Pseudogenes contribute to the extreme diversity of nuclear ribosomal DNA in the hard coral Acropora. Mol Biol Evol 20:1077–86. doi: 10.1093/molbev/msg122 PubMedCrossRefGoogle Scholar
  58. Massey LK, Hamrick JL (1998) Genetic diversity and population structure of Yucca filamentosa (Agavaceae). Am J Bot 85(3):340–345. doi: 10.2307/2446326 PubMedCrossRefGoogle Scholar
  59. Mayol M, Rosselló JA (2001) Why nuclear ribosomal DNA spacers (ITS) tell different stories in Quercus. Mol Phylogenet Evol 19:167–176. doi: 10.1006/mpev.2001.0934 PubMedCrossRefGoogle Scholar
  60. Moreno-Salazar SF, Esqueda MA, Martínez J, Palomino G (2007) Nuclear genome size and karyotype of Agave angustifolia and A rhodacantha from Sonora, México. Rev Fitotec Mex 30:13–23Google Scholar
  61. Muir G, Fleming CC, Schlotterer C (2001) Three divergent rDNA clusters predate the species divergence in Quercus petraea (Matt.) Liebl. and Quercus robur L. Mol Biol Evol 18:112–119PubMedCrossRefGoogle Scholar
  62. Ng’uni D, Geleta M, Fatih M, Bryngelsson T (2010) Phylogenetic analysis of the genus Sorghum based on combined sequence data from cpDNA regions and ITS generate well-supported trees with two major lineages. Ann Bot 105:471–80. doi: 10.1093/aob/mcp305 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Nicot N, Hausman J-F, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56:2907–2914. doi: 10.1093/jxb/eri285 PubMedCrossRefGoogle Scholar
  64. Nishiyama T, Kato M (1999) Molecular phylogenetic analysis among Bryophytes and Tracheophytes based on combined data of plastid coded genes and the 18S rRNA gene. Mol Biol Evol 16:1027–1036PubMedCrossRefGoogle Scholar
  65. Nobel PS (1998) Los incomparables agaves y cactos. Primera edición en español. Ed. Trillas, MéxicoGoogle Scholar
  66. Palomino G, Dolezel J, Méndez I, Rubluo A (2003) Nuclear genome size analysis of Agave tequilana Weber. Caryologia 56:37–46. doi: 10.1080/00087114.2003.10589305 CrossRefGoogle Scholar
  67. Palomino G, Martinez J, Méndez I (2005) Citotipos en Agave angustifolia Haw. determinados por citometría de flujo y ánalisis de sus cariotipos. Rev Int Contam Ambient 21:49–54Google Scholar
  68. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45PubMedPubMedCentralCrossRefGoogle Scholar
  69. Pires JC, Lim KY, Kovarík A, Matyásek R, Boyd A, Leitch AR, Leitch IJ, Bennett MD, Soltis PS, Soltis DE (2004) Molecular cytogenetic analysis of recently evolved Tragopogon (Asteraceae) allopolyploids reveal a karyotype that is additive of the diploid progenitors. Am J Bot 91:1022–1035. doi: 10.3732/ajb.91.7.1022 PubMedCrossRefGoogle Scholar
  70. Pontes O, Neves N, Silva M, Lewis MS, Madlung A, Comai L, Viegas W, Pikaard CS (2004) Chromosomal locus rearrangements are a rapid response to formation of the allotetraploid Arabidopsis suecica genome. Proc Natl Acad Sci USA 101:18240–18245. doi: 10.1073/pnas.0407258102 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Preuss S, Pikaard CS (2007) rRNA gene silence and nucleolar dominance: insights into a chromosome-scale epigenetic on/off switch. Biochim Biophys Acta Gene Struct Expr 1769:383–392. doi: 10.1016/j.bbaexp.2007.02.2005 CrossRefGoogle Scholar
  72. Reuter JS, Mathews DH (2010) RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics 11:129. doi: 10.1186/1471-2105-11-129 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Rich SM, Rosenthal BM, Telford SR III, Spielman A, Harti DL, Ayala FJ (1997) Heterogeneity of the internal transcribed spacer (ITS-2) region within individual deer ticks. Insect Mol Biol 6:123–129. doi: 10.1111/j.1365-2583.1997.tb00080.x PubMedCrossRefGoogle Scholar
  74. Robert ML, Lim KY, Hanson L, Sanchez-Teyer F, Bennett MD, Leitch RA, Leitch IJ (2008) Wild and agronomically important Agave species (Asparagaceae) show proportional increases in chromosome number, genome size, and genetic markers with increasing ploidy. Bot J Linn Soc 158:215–222. doi: 10.1111/j.1095-8339.2008.00831.x CrossRefGoogle Scholar
  75. Román MI, Alonso M, Xonia X, González SC (2004) Estudio del número cromosómico y la fertilidad del polen en especies y clones diploides de Platano fruta (Musa spp). Cultivos Tropicales 25:71–73Google Scholar
  76. Sandmeier JJ, French S, Osheim Y, Cheung WL, Gallo M, Beyer AL, Smith JS (2002) RPD3 is required for the inactivation of yeast ribosomal DNA genes in stationary phase. EMBO J 21:4959–4968. doi: 10.1093/emboj/cdf498 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Serrano-Serrano ML, Andueza-Noh RH, Martínez-Castillo J, Debouck GD, Chacón IM (2012) Evolution and domestication of Lima Bean in Mexico: evidence from ribosomal DNA. Crop Sci 52:1698. doi: 10.2135/cropsci2011.12.0642 CrossRefGoogle Scholar
  78. Shishido R, Sano Y, Fukui K (2000) Ribosomal DNAs: an exception to the conservation of gene order in rice genomes. Mol Gen Genet 263:586–591. doi: 10.1007/s004380051205 PubMedCrossRefGoogle Scholar
  79. Suh Y, Thien LB, Reeve HE, Zimmer EA (1993) Molecular evolution and phylogenetic implications of internal transcribed spacer sequence of ribosomal DNA in Winteraceae. Am J Bot 80:1042–1055CrossRefGoogle Scholar
  80. Szymanski M, Barciszewska MZ, Erdmann VA, Barciszewski J (2002) 5S ribosomal RNA database. Nucleic Acids Res 30:176–8PubMedPubMedCentralCrossRefGoogle Scholar
  81. Szymański M, Miroslawa B, Volker EA, Barciszewski J (2003) 5S rRNA: structure and interactions. Biochem J 371:641–651. doi: 10.1042/BJ20020872 PubMedPubMedCentralCrossRefGoogle Scholar
  82. Tamayo-Ordóñez M, Rodríguez -Zapata LC, Sánchez-Teyer LF (2012) Construction and characterization of a partial binary bacterial artificial chromosome (BIBAC) of Agave tequilana var. azul (2X) and its application for gene identification. Afr J Biotechnol 11:15950–15958. doi: 10.5897/AJB12.2041 Google Scholar
  83. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi: 10.1093/molbev/msr121 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple; sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedPubMedCentralCrossRefGoogle Scholar
  85. Thompson JN, Nuismer SL, Merg K (2004) Plant polyploidy and the evolutionary ecology of plant/animal interactions. Biol J Linn Soc 82:511–519. doi: 10.1111/j.1095-8312.2004.00338.x CrossRefGoogle Scholar
  86. Torres-Maldonado L, Moreno-Mendoza N, Landa A, Merchant-Larios H (2001) Timing of SOX9 downregulation and female sex determination in gonads of the sea Turtle Lepidochelys olivacea. J Exp Zool 290:498–503. doi: 10.1002/jez.1093 PubMedCrossRefGoogle Scholar
  87. Udall JA, Wendel JF (2006) Polyploidy and crop improvement. Crop Sci 46:S3–S14. doi: 10.2135/cropsci2006.07.0489tpg CrossRefGoogle Scholar
  88. Vaio M, Speranza P, Valls JF, Guerra M, Mazzella C (2005) Localization of the 5S and 45S rDNA sites and cpDNA sequence analysis in species of the Quadrifaria group of Paspalum (Poaceae, Paniceae). Ann Bot 96:191–200. doi: 10.1093/aob/mci168 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Valenzuela GA (1997) El Agave tequilero, su cultivo e industria. Segunda edición. Monsanto-Litteris editores, MéxicoGoogle Scholar
  90. Vargas-Ponce O, Zizumbo-Villarreal D, Colunga-GarciaMarin P (2007) In situ diversity and maintenance of traditional Agave Landraces used in spirits production in West-Central Mexico. Econ Bot 61:362–375CrossRefGoogle Scholar
  91. Vargas-Ponce O, Zizumbo-Villareal D, Martínez-Castillo J, Coello-Coello J, Colunga-GarcíaMarín P (2009) Diversity and structure of landraces of Agave grown for spirits under traditional agriculture: a comparison with wild populations of A. angustifolia (Agavaceae) and commercial plantations of A. tequilana. Am J Bot 96:448–457. doi: 10.3732/ajb.0800176 PubMedCrossRefGoogle Scholar
  92. Wendel JF, Schnabel A, Seelanan T (1995) Bi-directional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc Natl Acad Sci USA 92:280–284PubMedPubMedCentralCrossRefGoogle Scholar
  93. Zhang HB, Zhao XP, Ding XL, Paterson AH, Wing R (1995) Preparation of megabase-size DNA from plant nuclei. Plant J 7:175–184. doi: 10.1046/j.1365-313X.1995.07010175.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Y. J. Tamayo-Ordóñez
    • 1
  • J. A. Narváez-Zapata
    • 2
  • L. F. Sánchez-Teyer
    • 1
  1. 1.Centro de Investigación Científica de Yucatán A.C.Unidad de BiotecnologíaYucatánMexico
  2. 2.Centro de Biotecnología GenómicaInstituto Politécnico NacionalMexicoMexico

Personalised recommendations