Plant Molecular Biology Reporter

, Volume 33, Issue 6, pp 1755–1767 | Cite as

Genetic Relationship and Diversity Analysis of Faba Bean (Vicia Faba L. var. Minor) Genetic Resources Using Morphological and Microsatellite Molecular Markers

  • Ghassen Abid
  • Dominique Mingeot
  • Sripada M. Udupa
  • Yordan Muhovski
  • Bernard Watillon
  • Khaled Sassi
  • Mahmoud M’hamdi
  • Fatma Souissi
  • Khediri Mannai
  • Fathi Barhoumi
  • Moez Jebara
Original Paper


Assessment of genetic diversity is an essential component in germplasm characterization and utilization. Molecular markers serve as a valuable tool to assess the genetic variation and germplasm identification, which play a key role for faba (Vicia faba L.) bean breeding. In this study, we analyzed the genetic diversity of faba bean accessions based on simple sequence repeats (SSRs) and morphological traits. Forty-six faba bean accessions, originating from different countries and from the ICARDA breeding program, were evaluated by using 15 morphological and agronomic traits and 17 simple sequence repeat (SSR) loci. Significant differences among accessions for the 15 morphological descriptors were observed. Analysis by SSR markers showed a high genetic diversity among the accessions: All SSRs showed polymorphism, and 101 alleles were revealed for all accessions. The number of alleles at each locus ranged from 2 to 10, with an average of 5.94 alleles per marker, and the polymorphic information content (PIC) values ranged from 0.38 to 0.84 with a mean of 0.69. Expected heterozygosity (He), observed heterozygosity (Ho), unbiased expected heterozygosity (UHe), and Shannon’s information index (I) showed existence of high genetic variation between accessions from different pedigree. Analyses of genetic distance of the accessions separated the accessions into two groups and seven and five subgroups according to morphological and SSR analysis, respectively. Principal component analysis (PCA) of the SSR markers showed that the first two principal components (PCs) explained a total of 43.90 % of the genetic variation and allowed to distinguish three groups of accessions. Regardless of the method of analysis, Tunisian cultivars are grouped together. For the rest of the accessions, the geographical origin did not seem to be the main factor for structuring the variability of the studied accessions. Elite accessions from the ICARDA faba bean program differed from others and clustered together. The results obtained suggested that the faba bean microsatellite markers can be used to efficiently distinguish faba bean genotypes and to estimate their genetic diversity.


Genetic diversity Molecular markers Simple sequence repeat (SSR) Vicia faba


  1. Achtar S, Moualla MY, Kalhout A, Röder MS, MirAli N (2010) Assessment of genetic diversity among Syrian durum (Triticum ssp. durum) and bread wheat (Triticum aestivum L.) using SSR markers. Russ J Genet 46:1320–1326CrossRefGoogle Scholar
  2. Aouar-sadli M, Louadi K, Doumandji S (2008) Pollination of the broad bean (Vicia faba L. var. major) (Fabaceae) by wild bees and honey bees (Hymenoptera: Apoidea) and its impact on the seed production in the Tizi-Ouzou area (Algeria). Afr J Agric Res 3:266–272Google Scholar
  3. Ayed MH (2011) Effect of partially replacing soybean by broad beans “vicia faba var minor” on digestibility, growth performances and carcass characteristics in broiler chickens. Adv Environ Biol 5:2332–2335Google Scholar
  4. Baranski R, Maksylewicz-Kaul A, Nothnagel T, Cavagnaro PF, Simon PW, Grzebelus D (2012) Genetic diversity of carrot (Daucus carota L.) cultivars revealed by analysis of SSR loci. Genet Resour Crop Evol 59:163–170CrossRefGoogle Scholar
  5. Benbouza H, Jacquemin JM, Baudoin JP, Mergeai G (2006) Optimization of a reliable, fast, cheap and sensitive silver staining method to detect SSR markers in polyacrylamide gels. Biotechnol Agron Soc Environ 10:77–81Google Scholar
  6. Boczkowska M, Bulińska-Radomska Z, Nowosielski J (2012) AFLP analysis of genetic diversity in five accessions of Polish runner bean (Phaseolus coccineus L.). Genet Resour Crop Evol 59:473–478CrossRefGoogle Scholar
  7. Botstein D, White RL, Skalnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphism. Am J Hum Genet 32:314–331PubMedPubMedCentralGoogle Scholar
  8. Cao Y, Tian L, Gao Y, Liu F (2012) Genetic diversity of cultivated and wild Ussurian Pear (Pyrus ussuriensis Maxim.) in China evaluated with M13-tailed SSR markers. Genet Resour Crop Evol 59:9–17CrossRefGoogle Scholar
  9. Duc G (1997) Faba bean (Vicia faba L.). Field Crop Res 53:99–109CrossRefGoogle Scholar
  10. Duc G, Bao S, Baum M, Redden B, Sadiki M, Suso MJ, Vishniakova M, Zong X (2010) Diversity maintenance and use of Vicia faba L. genetic resources. Field Crop Res 115:270–278CrossRefGoogle Scholar
  11. Ellis JR, Burke JM (2007) EST-SSRs as a resource for population genetic analyses. Heredity 99:125–132PubMedCrossRefGoogle Scholar
  12. Ellwood SR, Phan HTT, Jordan M, Hane J, Torres AM, Avila CM, Cruz-Izquierdo S, Oliver RP (2008) Construction of a comparative genetic map in faba bean (Vicia faba L.); conservation of genome structure with Lens culinaris. BMC Genomics 9:380–391PubMedPubMedCentralCrossRefGoogle Scholar
  13. Gong YM, Xu SC, Mao WH, Hu QZ, Zhang GW, Ding J, Li ZY (2010) Generation and characterization of 11 novel EST derived microsatellites from Vicia faba (Fabaceae). Am J Bot 97:69–71CrossRefGoogle Scholar
  14. Gong YM, Xu SH, Mao WH, Li ZY, Hu QZ, Zhang GW, Ding J (2011) Genetic diversity analysis of faba bean (Vicia faba L.) based on EST-SSR markers. Agric Sci China 10:838–844CrossRefGoogle Scholar
  15. Gower JC (1971) A general coefficient of similarity and some of its properties. Biometrics 27:857–874CrossRefGoogle Scholar
  16. Gresta F, Avola G, Albertini E, Raggi L, Abbate V (2010) A study of variability in the Sicilian faba bean landrace ‘Larga di Leonforte’. Genet Resour Crop Evol 57:523–531CrossRefGoogle Scholar
  17. Hwang TY, Nakamoto Y, Kono I, Enoki H, Funatsuki H, Kitamura K, Ishimoto M (2008) Genetic diversity of cultivated and wild soybean including Japanese elite cultivars as revealed by length polymorphism of SSR markers. Breed Sci 58:315–323CrossRefGoogle Scholar
  18. International Board for Plant Genetic Resources (IBPGR) (1985) Faba bean descriptors. IBPGR, Rome (31 pp)Google Scholar
  19. Keneni G, Bekele E, Imtiaz M, Dagne K, Getu E, Assefia F (2012) Genetic diversity and population structure of Ethiopian chickpea (Cicer arietinum L.) germplasm accessions from different geographical origins as revealed by microsatellite markers. Plant Mol Biol Rep 30:654–665CrossRefGoogle Scholar
  20. Kharrat M, Ben Saleh H, Halila HM (1991) Faba bean status and prospects in Tunisia. CIHEAM Options Mediterr 10:169–172Google Scholar
  21. Kovach WL (2007) MVSP - A MultiVariate Statistical Package for Windows, ver. 3.1. Kovach Computing Services, Pentraeth, Wales, U.KGoogle Scholar
  22. Kwon SJ, Hu J, Coyne CJ (2010) Genetic diversity and relationship among faba bean (Vicia faba L.) germplasm entries as revealed by TRAP markers. Plant Genet Resour Characterization Util 8:204–213CrossRefGoogle Scholar
  23. Li Z, Wang X, Zhang Y, Zhang G, Wu L, Chi J, Ma Z (2008) Assessment of genetic diversity in glandless cotton germplasm resources by using agronomic traits and molecular markers. Front Agric China 2:245–252CrossRefGoogle Scholar
  24. Link W, Dixkens C, Singh M, Schwall M (1995) Genetic diversity in European and Mediterranean faba bean germplasm revealed by RAPD markers. Theor Appl Genet 90:27–32PubMedCrossRefGoogle Scholar
  25. Liu Y, Hou W (2010) Genetic diversity of faba bean germplasms in qinghai and core germplasm identified based on AFLP analysis. Legume Genomics Genet 1:1–6Google Scholar
  26. Ma Y, Yang T, Guan J, Wang S, Wang H, Sun X, Zong X (2011) Developpment and characterization of 21 EST-derived microsatellite markers in Vicia faba (faba bean). Am J Bot 98:22–24CrossRefGoogle Scholar
  27. McClean PE, Terpstra J, McConnell M, White C, Lee R, Mamidi S (2012) Population structure and genetic differentiation among the USDA common bean (Phaseolus vulgaris L.) core collection. Genet Resour Crop Evol 59:499–515CrossRefGoogle Scholar
  28. Mejri S, Mabrouk Y, Voisin M, Delavault P, Simier P, Saidi M, Belhadj O (2012) Variation in quantitative characters of faba bean after seed irradiation and associated molecular changes. Afr J Biotechnol 11:8383–8390Google Scholar
  29. Mir RR, Kumar J, Balyan HS, Gupta PK (2012) A study of genetic diversity among Indian bread wheat (Triticum aestivum L.) cultivars released during last 100 years. Genet Resour Crop Evol 59:717–726CrossRefGoogle Scholar
  30. Mustafa AZMA (2007) Genetic variation among Egyptian cultivars of Vicia faba L. Pak J Biol Sci 10:4204–4210CrossRefGoogle Scholar
  31. Nei M (1972) genetic distance between populations. Am Nat 106:283–291CrossRefGoogle Scholar
  32. Nei M, Li WH (1979) mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Soc USA 76:5269–5273CrossRefGoogle Scholar
  33. Ouji A, El Bok S, Syed NH, Abdellaoui R, Rouaissi M, Flavell AJ, El Gazzah M (2012) Genetic diversity of faba bean (Vicia faba L.) populations revealed by sequence specific amplified polymorphism (SSAP) markers. Afr J Biotechnol 11:2162–2168Google Scholar
  34. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel, population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  35. Perrino P, Robertson LD, Silh MB (1991) Maintenance, evaluation and use of faba bean germplasm collections: problems and prospects. CIHEAM Options Méditerr 10:21–31Google Scholar
  36. Polignano GB, Alba E, Ugentil P, Scippa G (1999) Geographical patterns of variation in bari faba bean germplasm collection. Genet Res Crop Evol 46:183–192CrossRefGoogle Scholar
  37. Przybylska J, Zimniak-Przybylska Z, Krajewski P (1998) Isoenzyme variation in the wild relatives of Vicia faba (Fabaceae). Plant Syst Evol 213:173–186CrossRefGoogle Scholar
  38. Roy A, Bal SS, Fergany M, Kaur S, Singh H, Malik AA, Singh J, Monforte AJ, Dhillon NPS (2012) Wild melon diversity in India (Punjab State). Genet Resour Crop Evol 59:755–767CrossRefGoogle Scholar
  39. Salem KFM, El-Zanaty AM, Esmail RM (2008) Assessing wheat (Triticum aestivum L.) genetic diversity using morphological characters and microsatellite markers. Word J Agric Sci 5:538–544Google Scholar
  40. Sardos J, Noyer JL, Malapa R, Bouchet S, Lebot V (2012) Genetic diversity of taro (Colocasia esculenta (L.) Schott) in Vanuatu (Oceania): an appraisal of the distribution of allelic diversity (DAD) with SSR markers. Genet Resour Crop Evol 59:805–820CrossRefGoogle Scholar
  41. Smith JSC, Chin ECL, Shu H, Smith OS, Wall SJ et al (1997) An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparisons with data from RFLPs and pedigree. Theor Appl Genet 95:163–173CrossRefGoogle Scholar
  42. Stoddard FL, Kohpina S, Knight R (1999) Variability of Ascochyta fabae in South Australia. Aust J Agr Res 50:1475–1481CrossRefGoogle Scholar
  43. Suresh S, Park JH, Cho GT, Lee HS, Baek HJ, Lee SY, Chung JW (2013) Development and molecular characterization of 55 novel polymorphic cDNA-SSR markers in faba bean (vicia faba L.) using 454 pyrosequencing. Molecules 18:1844–1856PubMedCrossRefGoogle Scholar
  44. Tams SH, Bauer E, Oettler G, Melchinger AE (2004) Genetic diversity in European winter triticale determined with SSR markers and coancestry coefficient. Theor Appl Genet 108:1385–1391PubMedCrossRefGoogle Scholar
  45. Tanno K, Willcox G (2006) The origins of cultivation of Cicer arietinum L. and Vicia faba L.: early finds from Tell el-Kerkh, north-west Syria, late10th millennium B.P. Veget Hist Archaeobot 15:197–204CrossRefGoogle Scholar
  46. Terzopoulos PJ, Kaltsikes PJ, Bebeli PJ (2003) Collection, evaluation and classification of Greek population of faba bean (Vicia faba L.). Genet Res Crop Evol 50:373–381CrossRefGoogle Scholar
  47. Terzopoulos PJ, Kaltsikes PJ, Bebeli PJ (2004) Characterization of Greek populations of faba bean (Vicia faba L.) and their evaluation using a new parameter. Genet Res Crop Evol 51:655–662CrossRefGoogle Scholar
  48. Terzopoulos PJ, Bebeli PJ (2008) Genetic diversity analysis of Mediterranean faba bean (Vicia faba L.) with ISSR markers. Field Crop Res 108:39–44CrossRefGoogle Scholar
  49. Van de Ven M, Powell W, Ramsay G, Waugh R (1990) Restriction fragment length polymorphisms as genetic markers in Vicia. Heredity 65:329–342CrossRefGoogle Scholar
  50. Waly EA, Farghali MA, Abbas HS, Mosselhy DS (2012) Identification of the genetic differences between some faba bean genotypes by finger print characters. J Appl Sci Res 8:17–24Google Scholar
  51. Wang KJ, Li XH (2012) Genetic diversity and geographical peculiarity of Tibetan wild soybean (Glycine soja). Genet Resour Crop Evol 59:479–490CrossRefGoogle Scholar
  52. Yahia Y, Guetat A, Elfalleh W, Ferchichi A, Yahia H, Loumerm M (2012) Analysis of agromorphological diversity of southern Tunisia faba bean (Vicia faba L.) germplasm. Afr J Biotechnol 11(56):11913–11924Google Scholar
  53. Zied M, Schon CC, Link W (2003) Genetic diversity in recent elite faba bean lines using AFLP markers. Theor Appl Genet 107:1304–1314CrossRefGoogle Scholar
  54. Zeid M, Mitchell S, Link W, Carter M, Nawar A, Fulton T, Kresovich S (2009) Simple sequence repeats (SSRs) in faba bean: new loci from Orobanche-resistant cultivar ‘Giza 402’. Plant Breed 128:149–155CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ghassen Abid
    • 1
  • Dominique Mingeot
    • 2
  • Sripada M. Udupa
    • 3
  • Yordan Muhovski
    • 2
  • Bernard Watillon
    • 2
  • Khaled Sassi
    • 4
  • Mahmoud M’hamdi
    • 5
  • Fatma Souissi
    • 1
  • Khediri Mannai
    • 1
  • Fathi Barhoumi
    • 1
  • Moez Jebara
    • 1
  1. 1.Laboratory of Legumes, Center of Biotechnology of Borj CedriaUniversity of Tunis El ManarHammam-LifTunisia
  2. 2.Unit of Biological Engineering, Department of Life SciencesWalloon Agricultural Research CentreGemblouxBelgium
  3. 3.ICARDA-INRA Cooperative Research ProjectInternational Center for Agricultural Research in the Dry Areas (ICARDA)RabatMorocco
  4. 4.Laboratory of Agronomy, Department of Agronomy and Plant Biotechnology, National Agronomy Institute of Tunisia (INAT)University of CarthageTunis-MahrajèneTunisia
  5. 5.Higher Agronomic Institute of Chott MariemSousseTunisia

Personalised recommendations