Plant Molecular Biology Reporter

, Volume 33, Issue 5, pp 1526–1538 | Cite as

Comparative Analysis of Asteraceae Chloroplast Genomes: Structural Organization, RNA Editing and Evolution

  • Mengxing Wang
  • Licao Cui
  • Kewei Feng
  • Pingchuan Deng
  • Xianghong Du
  • Fanghao Wan
  • Song WeiningEmail author
  • Xiaojun NieEmail author
Original Paper


Comparative chloroplast genome analysis presents new opportunities for performing molecular phylogeny studies and revealing the significant evolutionary features in higher plants, which has been widely documented from conifers to grass family. However, a systematic analysis of chloroplast genomes in Asteraceae family has not been conducted up to now. In this study, we compared and analyzed the gene content, genomic organization, and RNA editing sites of eight representative Asteraceae chloroplast genomes. Results showed that Asteraceae chloroplast had relatively conservative gene content. No gain or loss events occurred in the protein-coding genes, while some differences were found to be present in the gene structure and transfer RNA (tRNA) abundance. Genome structure analysis found some Asteraceae-specific or species-specific structure variations, and sequence rearrangement events were present in these genomes, suggesting specific evolutionary processes have occurred in this family. Some DNA regions containing parsimony-informative characters higher than 5 % were also identified, which could be used as the new molecular markers for phylogenetic analysis and plant identification of Asteraceae species. Furthermore, RNA editing in these genomes was investigated through computational analysis, and some species-specific sites were identified. Finally, phylogenetic analysis of 81 genes from 70 species supported the monophyly of the Asteraceae. Our study for the first time compared the organization, structure, and sequence divergence of eight Asteraceae chloroplast genomes, which will provide the valuable resource for molecular phylogeny of Asteraceae species and also facilitate the genetic and evolutionary studies in this family.


Comparative genomics Chloroplast Asteraceae family RNA editing Molecular evolution 



This research was mainly funded by the National Basic Research Program of China (973 Program) (Grant No. 2009CB119200) and the National Natural Science Foundation of China (Grant No. 31471825) and partially supported by 948 Program (Grant No. 2010-S1), Ministry of Agriculture of China and the Open Project Program (Grant No. SKLOF201314), State Key Laboratory for Biology of Plant Diseases and Insect Pest.

Supplementary material

11105_2015_853_MOESM1_ESM.doc (192 kb)
ESM 1 (DOC 192 kb)
11105_2015_853_Fig7_ESM.jpg (941 kb)

Dot-plot comparison showing conserved and inverted regions found in two Chrysanthemum species, Ageratina, Guizotia, Helianthus, Jacobaea and Lactuca cp genomes (JPEG 941 kb)

11105_2015_853_Fig8_ESM.jpg (1.7 mb)

Phylogenetic tree reconstruction of 70 taxa using maximum likelihood (ML) based on concatenated sequence from 81 cp genes. The position of the Asteraceae family is indicated by a red box (JPEG 1697 kb)


  1. Barker MS, Kane NC, Matvienko M, Kozik A, Michelmore RW, Knapp SJ, Rieseberg LH (2008) Multiple paleopolyploidizations during the evolution of the compositae reveal parallel patterns of duplicate gene retention after millions of years. Mol Biol Evol 25:2445–2455. doi: 10.1093/molbev/msn187 PubMedCentralCrossRefPubMedGoogle Scholar
  2. Bock DG, Kane NC, Ebert DP, Rieseberg LH (2014) Genome skimming reveals the origin of the Jerusalem artichoke tuber crop species: neither from Jerusalem nor an artichoke. New Phytol 201:1021–1030CrossRefPubMedGoogle Scholar
  3. Bremer K (1994) Asteraceae: cladistics and classification. Timber Press, PortlandGoogle Scholar
  4. Carlquist S (1976) Tribal interrelationships and phylogeny of the Asteraceae. Aliso 8:465–492Google Scholar
  5. Chen H, Deng L, Jiang Y, Lu P, Yu J (2011) RNA editing sites exist in protein-coding genes in the chloroplast genome of Cycas taitungensis. J Integr Plant Biol 53:961–970. doi: 10.1111/j.1744-7909.2011.01082.x CrossRefPubMedGoogle Scholar
  6. Chumley TW, Palmer JD, Mower JP, Fourcade HM, Calie PJ, Boore JL, Jansen RK (2006) The complete chloroplast genome sequence of Pelargonium × hortorum: organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. Mol Biol Evol 23:2175–2190. doi: 10.1093/molbev/msl089 CrossRefPubMedGoogle Scholar
  7. Chung HJ, Jung JD, Park HW, Kim JH, Cha HW, Min SR, Jeong WJ, Liu JR (2006) The complete chloroplast genome sequences of Solanum tuberosum and comparative analysis with Solanaceae species identified the presence of a 241-bp deletion in cultivated potato chloroplast DNA sequence. Plant Cell Rep 25:1369–1379. doi: 10.1007/s00299-006-0196-4 CrossRefPubMedGoogle Scholar
  8. Darling ACE, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403. doi: 10.1101/gr.2289704 PubMedCentralCrossRefPubMedGoogle Scholar
  9. Dempewolf H, Kane NC, Ostevik KL et al (2010) Establishing genomic tools and resources for Guizotia abyssinica (L.f.) Cass.—the development of a library of expressed sequence tags, microsatellite loci, and the sequencing of its chloroplast genome. Mol Ecol Resour 10:1048–1058. doi: 10.1111/j.1755-0998.2010.02859.x CrossRefPubMedGoogle Scholar
  10. Doorduin L, Gravendeel B, Lammers Y, Ariyurek Y, Chin-A-Woeng T, Vrieling K (2011) The complete chloroplast genome of 17 individuals of pest species Jacobaea vulgaris: SNPs, microsatellites and barcoding markers for population and phylogenetic studies. DNA Res 18:93–105. doi: 10.1093/dnares/dsr002 PubMedCentralCrossRefPubMedGoogle Scholar
  11. Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I (2004) VISTA: computational tools for comparative genomics. Nucleic Acids Res 32:W273–W279. doi: 10.1093/nar/gkh458 PubMedCentralCrossRefPubMedGoogle Scholar
  12. Funk VA, Bayer RJ, Keeley S et al (2005) Everywhere but Antarctica: using a supertree to understand the diversity and distribution of the Compositae. In: Friis I, Balslev H (eds) Plant diversity and complexity patterns: local, regional and global dimensions, the Royal Danish Academy of Sciences and Letters in Copenhagen. Denmark, Kgl. Danske Videnskabernes Selskab, pp 343–373Google Scholar
  13. Ghimiray D, Sharma BC (2014) Comparative and bioinformatics analyses of the solanaceae chloroplast genomes: plastome organization is more or less conserved at family level. J App Biol Biotech 3:021–026. doi: 10.7324/JABB.2014.2305 Google Scholar
  14. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp 41:95–98Google Scholar
  15. Howe CJ, Barbrook AC, Koumandou VL, Nisbet RER, Symington HA, Wightman TF (2003) Evolution of the chloroplast genome. Philos Trans R Soc Lond B Biol Sci 358:99–107. doi: 10.1098/rstb.2002.1176 PubMedCentralCrossRefPubMedGoogle Scholar
  16. Jansen RK, Cai ZQ, Raubeson LA et al (2007) Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci 104:19369–19374. doi: 10.1073/pnas.0709121104 PubMedCentralCrossRefPubMedGoogle Scholar
  17. Kim K-J, Choi K-S, Jansen RK (2005) Two chloroplast DNA inversions originated simultaneously during the early evolution of the sunflower family (Asteraceae). Mol Biol Evol 22:1783–1792. doi: 10.1093/molbev/msi174 CrossRefPubMedGoogle Scholar
  18. Liu Y, Huo N, Dong L et al (2013) Complete chloroplast genome sequences of Mongolia medicine Artemisia frigida and phylogenetic relationships with other plants. PLoS ONE 8:e57533. doi: 10.1371/journal.pone.0057533 PubMedCentralCrossRefPubMedGoogle Scholar
  19. Lundberg J, Bremer K (2003) A phylogenetic study of the order Asterales using one morphological and three molecular data sets. Int J Plant Sci 164:553–578. doi: 10.1086/374829 CrossRefGoogle Scholar
  20. Maier RM, Neckermann K, Igloi GL, Kössel H (1995) Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J Mol Biol 251:614–628. doi: 10.1006/jmbi.1995.0460 CrossRefPubMedGoogle Scholar
  21. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans, LA, pp 1-8. doi:10.1109/GCE.2010.5676129Google Scholar
  22. Mower JP (2009) The PREP suite: predictive RNA editors for plant mitochondrial genes, chloroplast genes and user-defined alignments. Nucleic Acids Res 37:W253–W259. doi: 10.1093/nar/gkp337 PubMedCentralCrossRefPubMedGoogle Scholar
  23. Nie X, Lv SZ, Zhang YX et al (2012) Complete chloroplast genome sequence of a major invasive species, crofton weed (Ageratina adenophora). PLoS ONE 7:e36869. doi: 10.1371/journal.pone.0036869 PubMedCentralCrossRefPubMedGoogle Scholar
  24. Nie XJ, Deng PC, Feng KW et al (2014) Comparative analysis of codon usage patterns in chloroplast genomes of the Asteraceae family. Plant Mol Biol Report 32:828–840CrossRefGoogle Scholar
  25. Ogihara Y, Terachi T, Sasakuma T (1988) Intramolecular recombination of chloroplast genome mediated by short direct-repeat sequences in wheat species. Proc Natl Acad Sci 85:8573–8577PubMedCentralCrossRefPubMedGoogle Scholar
  26. Ovcharenko I, Loots GG, Giardine BM, Hou M, Ma J, Hardison RC, Stubbs L, Miller W (2005) Mulan: multiple-sequence local alignment and visualization for studying function and evolution. Genome Res 15:184–194. doi: 10.1101/gr.3007205 PubMedCentralCrossRefPubMedGoogle Scholar
  27. Palmer JD (1991) Plastid chromosomes: structure and evolution. In: Hermann RG (ed) The molecular biology of plastids, vol 7A, Cell culture and somatic cell genetics of plants. Springer, Vienna, pp 5–53CrossRefGoogle Scholar
  28. Raubeson LA, Jansen RK (2005) Chloroplast genomes of plants. In: Herry RJ (ed) Plant diversity and evolution: genotypic and phenotypic variation in higher plants. CABI Publising, Wallingford, pp 45–68CrossRefGoogle Scholar
  29. Rivas JDL, Lozano JJ, Ortiz AR (2002) Comparative analysis of chloroplast genomes: functional annotation, genome-based phylogeny, and deduced evolutionary patterns. Genome Res 12:567–583. doi: 10.1101/gr.209402 PubMedCentralCrossRefGoogle Scholar
  30. Shinozaki K, Ohme M, Tanaka M et al (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 9:2043–2049Google Scholar
  31. Swofford DL (2002) PAUP* Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4. Sinauer Associates, Sunderland, MassachusettsGoogle Scholar
  32. Tillich M, Lehwark P, Morton BR, Maier UG (2006) The evolution of chloroplast RNA editing. Mol Biol Evol 23:1912–1921CrossRefPubMedGoogle Scholar
  33. Timme RE, Kuehl JV, Boore JL, Jansen RK (2007) A comparative analysis of the Lactuca and Helianthus (Asteraceae) plastid genomes: identification of divergent regions and categorization of shared repeats. Am J Bot 94:302–312. doi: 10.3732/ajb.94.3.302 CrossRefPubMedGoogle Scholar
  34. Wu CS, Lin CP, Hsu CY, Wang RJ, Chaw SM (2011) Comparative chloroplast genomes of pinaceae: insights into the mechanism of diversified genomic organizatio ns. Genome Biol Evol 3:309–319Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Mengxing Wang
    • 1
  • Licao Cui
    • 1
  • Kewei Feng
    • 1
  • Pingchuan Deng
    • 1
  • Xianghong Du
    • 1
  • Fanghao Wan
    • 2
  • Song Weining
    • 1
    Email author
  • Xiaojun Nie
    • 1
    Email author
  1. 1.State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement CenterNorthwest A&F UniversityYanglingChina
  2. 2.State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina

Personalised recommendations