Plant Molecular Biology Reporter

, Volume 33, Issue 3, pp 742–747 | Cite as

Plant Transformation via Pollen Tube-Mediated Gene Transfer

  • Asjad Ali
  • Sun Woong Bang
  • Sang-Min Chung
  • Jack E. Staub
Original Paper


Genetic transformation using foreign genes and the subsequent development of transgenic plants has been employed to develop enhanced elite germplasm. Although some skepticism exits regarding pollen tube-mediated gene transfer (PTT), reports demonstrating improved transformation efficiency with PTT systems are increasing and encouraging and the adoption of increasingly refined pollen-mediated methodologies may lead to species-dependent improvements in breeding. Here, we highlight PTT technology as an alternative to genetic transformation.


Molecular breeding Ovary drip Plant improvement Pollen tube pathway 


  1. Agarwal S, Loar S, Steber C, Zale J (2009) Floral transformation of wheat. Methods Mol Biol 478:105–114CrossRefPubMedGoogle Scholar
  2. Aggarwal S, Nirmala C, Beri S, Rastogi S, Adholeya A (2012) In vitro symbiotic seed germination and molecular characterization of associated endophytic fungi in a commercially important and endangered Indian orchid Vanda coerulea Griff. Ex Lindl. Eur J Environ Sci 2:33–42Google Scholar
  3. Bates GW (1995) Electroporation of plant protoplasts and tissues. In: Galbraith DW, Bourque DP, Bohnert HJ (eds) Methods Cell Biol (vol. 50), New York, pp. 363–373Google Scholar
  4. Bibi N, Kai F, Shuna Y, Mi N, Mosaddek IM, Waqas M, Xuede W (2013) An efficient and highly reproducible approach for the selection of upland transgenic cotton produced by pollen tube pathway method. Aust J Crop Sci 7:1714–1722Google Scholar
  5. Bosela MJ, Smagh GS, Michler CH (2004) Genetic transformation of black walnut (Juglans nigra). In: Michler CH, Pijut PM, van Sambeek JW, Coggeshall MV, Seifert J, Woeste K, Overton R, Ponder F Jr. (eds) Black walnut in a new century, Proceedings of the 6th Walnut Council research symposium. USDA Forest Service, North Central Research Station, St. Paul, MN. Gen. Tech. Rep. NC-243; 2004:45–58Google Scholar
  6. Castelblanque L, Marfa V, Claveria E, Martinez I, Perez-Grau L, Dolcet-Sanjuan R (2008) Improving the genetic transformation efficiency of Cucumis melo subsp. melo ‘Piel de Sapo’ via Agrobacterium. Cucurbitaceae 2008. In: Pitrat M (ed) Proceedings of the IXth EUCARPIA meeting on genetic and breeding of Cucurbitaceae. INRA, Avignon (France), May 21–24th, 2008Google Scholar
  7. Chen WS, Chiu CC, Liu HY, Lee TL, Cheng JT, Lin CC, Wu YJ, Chang HY (1998) Gene transfer via pollen-tube pathway for anti-fusarium wilt in watermelon. Biochem Mol Biol Int 46:1201–1209PubMedGoogle Scholar
  8. Clough SJ, Bent AF (1998) Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743CrossRefPubMedGoogle Scholar
  9. Danilova SA (2007) The technologies for genetic transformation of cereals. Russ J Plant Physiol 54:569–581CrossRefGoogle Scholar
  10. Dang W, Wei ZM (2007) Efficient Agrobacterium-mediated transformation of soybean. Fen Zi Xi Bao Sheng Wu Xue Bao 40(3):185–195PubMedGoogle Scholar
  11. Faranda S, Genga A, Viotti A, Manzocchi LA (1994) Stably transformed-cell lines from protoplasts of maize endosperm suspension cultures. Plant Cell Tissue Organ 37:39–46CrossRefGoogle Scholar
  12. Gaba V, Kless H, Antignus Y (1992) Transformation of melon by particle acceleration. Plant Physiol (Suppl.) 99:137Google Scholar
  13. Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the ‘gene-jockeying tool’. Microbiol Mol Biol Rev 67:16–37CrossRefPubMedCentralPubMedGoogle Scholar
  14. Guo W, Xueqin S, Qunxing D, Bolin L, Yuxiang J  (1998) Transgenic rice plants with parasponia haemoglobin gene and its expression. In: Mallik KA, Mizza MS, Ladha JK (eds) Nitrogen fixation with non-legumes. Proceedings of the Seventh International Symposium on Nitrogen Fixation with Non-Legumes. Dordrecht The Netherlands: Kluwer Academic Publishing, pp. 125–131Google Scholar
  15. Hao J, Niu Y, Yang B, Gao F, Zhang L, Wang J, Hasi A (2011) Transformation of marker-free and vector-free antisense ACC oxidase gene cassette into melon via the pollen-tube Pathway. Biotechnol Lett 33:55–61CrossRefPubMedGoogle Scholar
  16. Hossain MM, Kant R, Van PT, Winarto B, Zeng S, Silba TD (2013) The application of biotechnology to orchids. Crit Rev Plant Sci 32:69–139CrossRefGoogle Scholar
  17. Hou WS (2003) Development of transgenic wheat with a synthetical insecticidal crystal protein gene via pollen-tube pathway. Acta Agron Sin 29:806–809Google Scholar
  18. Hu CY, Wang LZ (1999) In planta soybean transformation technologies developed in China: procedure, confirmation and field performance. In Vitro Cell Dev Biol Plant 35:417–420CrossRefGoogle Scholar
  19. Huang G, Dong Y, Sun J (1999) Introduction of exogenous DNA into cotton via pollen-tube pathway with GFP as a reporter. China Sci Bull 44:698–701CrossRefGoogle Scholar
  20. Jiang L, Maoka T, Komori S, Fukamachi H, Kato H, Ogawa K (2004) An efficient method for sonication assisted Agrobacterium-mediated transformation of coat protein (CP) coding genes into papaya (Carica papaya L.). Shi Yan Sheng Wu Xue Bao 37(3):189–98PubMedGoogle Scholar
  21. Jin S, Zhang X, Liang S, Nie Y, Guo X, Huang C (2005) Factors affecting transformation efficiency of embryogenic callus of Upland cotton (Gossypium hirsutum) with Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult 81(2):229–237CrossRefGoogle Scholar
  22. Klein TM, Formm M, Weissinger A, Tomes D, Schaaf S, Sletten M, Sanford JC (1988) Transfer of foreign genes into intact maize cells with high-velocity microinjection. Proc Natl Acad Sci U S A 85:4305–4309CrossRefPubMedCentralPubMedGoogle Scholar
  23. Li J, Tang Y, Qin Y, Li X, Li H (2012) Agrobacterium-mediated transformation of watermelon (Citrullus lanatus). Afr J Biotechnol 11(24):6450–6456Google Scholar
  24. Li Z, Nelson RL, Widholm JM, Bent A (2002) Soybean transformation via the pollen tube pathway. Soybean Gen Newslett 29:1–11Google Scholar
  25. Liu J, Su Q, An L, Yang A (2009a) Transfer of a minimal linear marker-free and vector-free smGFP cassette into soybean via ovary-drip transformation. Biotechnol Lett 31:295–303CrossRefPubMedGoogle Scholar
  26. Liu M, Yang J, Cheng Y, An L (2009b) Optimization of soybean (Glycine max (L.) Merill) in planta ovary transformation using a linear minimal gus gene cassette. J Zhejiang Uni Sci B 10:870–876CrossRefGoogle Scholar
  27. Luo ZX, Wu RA (1988) Simple method for the transformation of rice via the pollen-tube pathway. Plant Mol Biol Rep 6:165–174CrossRefGoogle Scholar
  28. Martin N, Forgeois P, Picard E (1992) Investigations on transforming Triticum aestivum via the pollen tube pathway. Agronomie 12:537–544CrossRefGoogle Scholar
  29. Mu G, Chang N, Xiang K, Sheng Y, Zhang Z, Pan G (2012) Genetic transformation of maize female inflorescence flowering floral dip method mediated by Agrobacterium. Biotechnology 11:178–183CrossRefGoogle Scholar
  30. Peffley EB, Allen R, Song P, Shang X (2003) Texas Tech University, Lubbock TX (US). Direct transformation of higher plants through pollen tube pathway, U. S. Patent No. 6, 583, 335 B1Google Scholar
  31. Rajasekaran K (2013) Biolistic transformation of cotton zygotic embryo meristem. In: Transgenic cotton: methods and protocols. 958:47–57Google Scholar
  32. El R, Vianna GR, Aragao FJL (2008) High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants. Nat Protoc 3:410–418CrossRefGoogle Scholar
  33. Risacher T, Craze M, Bowden S, Paul W, Barsby T (2009) Highly efficient Agrobacterium-mediated transformation of wheat via in planta inoculation. In: Jones HD, Shewry PR (eds) Methods in molecular biology, transgenic wheat, barley and oats. 478:115–124Google Scholar
  34. Shi XX, Du G, Wang X, Pei D (2012) Studies on gene transformation via pollen-tube pathway in walnut. Acta Hortic Sin 39:1243–1252Google Scholar
  35. Shou HX, Palmer RG, Wang K (2002) Irreproducibility of the soybean pollen-tube pathway transformation procedure. Plant Mol Biol Rep 20:325–334CrossRefGoogle Scholar
  36. Souza Junior MT, Nickel O, Gonsalves D (2005) Development of virus resistant transgenic Papayas expressing the coat protein gene from a Brazilian isolate of Papaya ringspot virus. Fitopatol Bras 30:357–365CrossRefGoogle Scholar
  37. Suratman F, Huyop F, Wagiran A, Rahmat Z, Ghazali H, Parvez GKA (2010) Biolistic transformation of Citrullus vulgaris Schrad (Watermelon). Biotechnology 9(2):119–130CrossRefGoogle Scholar
  38. Tianzi C, ShenJie W, Jun Z, WangZhen G, TianZhen Z (2010) Pistil drip following pollination: a simple in planta Agrobacterium-mediated transformation in cotton. Biotechnol Lett 32:547–555CrossRefPubMedGoogle Scholar
  39. Tinland B (1996) The integration of T-DNA into plant genomes. Trends Plant Sci 1:178–184CrossRefGoogle Scholar
  40. Siemens J, Schieder O (1996) Transgenic plants: genetic transformation—recent developments and state of the art. Plant Tissue Cult Biotechnol 2:66–75Google Scholar
  41. Wang K, Frame B, Ishida Y, Komari T (2009) Maize transformation. In: Bennetzen JL, Hake S (eds) Handbook of Maize, genetics and genomics. Springer Science, New York, pp 609–640CrossRefGoogle Scholar
  42. Wei JY, Liu DB, Chen YY, Cai QF, Zhou P (2008) Transformation of PRSV-CP dsRNA gene into papaya by pollen-tube pathway technique. Acta Bot Bor Occi Sin 11:2159–2163Google Scholar
  43. Wright M, Dawson J, Dunder E, Suttie J, Reed J, Kramer C, Chang Y, Novitzky R, Wang H, Artim-Moore L (2001) Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as a selectable marker. Plant Cell Rep 20:429–436CrossRefGoogle Scholar
  44. Xu K, Huang X, Wu M, Wang Y, Chang Y et al (2014) A rapid, highly efficient and economical method of Agrobacterium-mediated in planta transient transformation in living onion epidermis. PLoS ONE 9(1):e83556. doi:10.1371/journal.pone.0083556 CrossRefPubMedCentralPubMedGoogle Scholar
  45. Yang A, Su Q, An L (2009a) Ovary-drip transformation: a simple method for directly generating vector- and marker-free transgenic maize (Zea mays L.) with a linear GFP cassette transformation. Planta 229:793–801CrossRefPubMedGoogle Scholar
  46. Yang A, Su Q, An L, Liu J, Wu W, Qiu Z (2009b) Detection of vector- and selectable marker-free transgenic maize with a linear GFP cassette transformation via the pollen-tube pathway. J Biotechnol 139:1–5CrossRefPubMedGoogle Scholar
  47. Zhang YS, Yin XY, Yang A, Li GS, Zhang J (2005) Stability of inheritance of transgenes in maize (Zea mays L.) line produced using different transformation methods. Euphytica 144:11–22CrossRefGoogle Scholar
  48. Zheng SJ, Khrustaleva L, Henken B, Jacobsen E, Kik C, Krens FA (2001) Agrobacterium tumefaciens-mediated transformation of Allium cepa L.: the production of transgenic onions and shallots. Mol Breed 7:101–115CrossRefGoogle Scholar
  49. Zhou GY, Weng J, Zeng Y, Huang J, Qian S, Liu G (1983) Introduction of exogenous DNA into cotton embryos. Methods Enzymol 101:433–481CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Asjad Ali
    • 1
  • Sun Woong Bang
    • 1
  • Sang-Min Chung
    • 1
  • Jack E. Staub
    • 2
  1. 1.Department of Life ScienceDongguk University-SeoulSeoulSouth Korea
  2. 2.USDA, ARS, Forage and Range Research LaboratoryLoganUSA

Personalised recommendations