Plant Molecular Biology Reporter

, Volume 33, Issue 4, pp 1107–1115 | Cite as

Tobacco Chloroplasts as Bioreactors for the Production of Recombinant Superoxide Dismutase in Plants, an Industrially Useful Enzyme

  • Raju Madanala
  • Vijayta Gupta
  • Ashutosh Kumar Pandey
  • Subhi Srivastava
  • Vivek Pandey
  • Pradhyumna Kumar Singh
  • Rakesh Tuli
Original Paper

Abstract

An inexpensive source of industrially useful enzymes is critical for their commercial production. We have produced an industrially valuable recombinant superoxide dismutase (SOD) in tobacco chloroplasts. A gene from Withania somnifera, encoding a highly stable Cu/Zn SOD, was cloned into a chloroplast transformation vector. It expressed the SOD in tobacco chloroplasts following transformation. The transplastomic plants accumulated the recombinant SOD at up to ∼9 % of the total soluble protein in leaves. The purified chloroplast-expressed recombinant SOD had an estimated specific activity of ∼4600 U/mg. Like the native enzyme, purified recombinant enzyme, prepared from tobacco leaves, was highly stable at high temperatures and tolerated a wide pH range, SDS, ethanol and protease treatment. The results establish the potential of chloroplast transformation for commercial production of recombinant SOD in plants.

Keywords

Chloroplast transformation Cu/Zn SOD Recombinant proteins Transplastomic plants Tobacco 

Supplementary material

11105_2014_805_MOESM1_ESM.doc (404 kb)
ESM 1(DOC 404 kb)

References

  1. Bafana A, Dutt S, Kumar S, Ahuja PS (2010) Superoxide dismutase: an industrial perspective. Crit Rev Biotechnol 31:65–76PubMedCrossRefGoogle Scholar
  2. Bally J, Paget E, Droux M, Job C, Dubald M (2008) Both the stroma and thylakoid lumen of tobacco chloroplasts are competent for the formation of disulphide bonds in recombinant proteins. Plant Biotechnol J 6:46–61PubMedGoogle Scholar
  3. Barnes D, Franklin S, Schultz J, Henry R, Brown E, Coragliotti A, Mayfield SP (2005) Contribution of 5′ and 3′ untranslated regions of plastid mRNAs to the expression of Chlamydomonas reinhardtii chloroplast genes. Mol Gen Genomics 274:625–636CrossRefGoogle Scholar
  4. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287PubMedCrossRefGoogle Scholar
  5. Bock R (2013) Strategies for metabolic pathway engineering with multiple transgenes. Plat Mol Biol 83:21–31CrossRefGoogle Scholar
  6. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  7. Chen C-N, Pan S-M (1996) Assay of superoxide dismutase activity by combining electrophoresis and densitometry. Bot Bull Acad Sin 37:107–111Google Scholar
  8. Daniell H (2006) Production of biopharmaceuticals and vaccines in plants via the chloroplast genome. Biotechnol J 1:1071–1079PubMedCrossRefGoogle Scholar
  9. Daniell H, Cohill P, Kumar S, Dufourmantel N (2004) Chloroplast genetic engineering. In: Daniell H, Chase C (eds) In molecular biology and biotechnology of plant organelles. Springer, Verlag, pp 443–490CrossRefGoogle Scholar
  10. Dufourmantel N, Tissot G, Garc¸on F, Pelissier B, Dubald M (2006) Stability of soybean recombinant plastome over six generations. Transgenic Res 15:305–311PubMedCrossRefGoogle Scholar
  11. Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112PubMedCrossRefGoogle Scholar
  12. Hefferon K (2013) Plant-derived pharmaceuticals for the developing world. Biotechnol J 8:1193–1202PubMedGoogle Scholar
  13. Hennig A, Bong K, Roitsch T, Warzecha H (2007) Expression of the recombinant bacterial outer surface protein A in tobacco chloroplasts leads to thylakoid localization and loss of photosynthesis. FEBS J 274:5749–5758PubMedCrossRefGoogle Scholar
  14. Hood EE (2002) From green plants to industrial enzymes. Enz Microb Technol 30:279–283CrossRefGoogle Scholar
  15. Khanna P, Staba J (1968) Antimicrobials from plant tissue cultures. Llyodia 31:180–189Google Scholar
  16. Kolotilin I, Kaldis A, Pereira EO, Laberge S, Menassa R (2013) Optimization of transplastomic production of hemicellulases in tobacco: effects of expression cassette configuration and tobacco cultivar used as production platform on recombinant protein yields. Biotechnol Biofuels 6:65PubMedCentralPubMedCrossRefGoogle Scholar
  17. Koya V, Moayeri M, Leppla SH, Daniell H (2005) Plant based vaccine: mice immunized with chloroplast-derived anthrax protective antigen survive anthrax lethal toxin challenge. Infect Immun 73:8266–8274PubMedCentralPubMedCrossRefGoogle Scholar
  18. Kusnadi A, Nikolov G, Howard J (1997) Production of recombinant proteins in plants: practical considerations. Biotechnol Bioeng 56:473–484PubMedCrossRefGoogle Scholar
  19. Madanala R, Gupta V, Deeba F, Upadhyay SK, Pandey V, Singh PK, Tuli R (2011) A highly stable Cu/Zn superoxide dismutase from Withania somnifera plant: cloning, expression and characterization of recombinant protein. Biotechnol Let 33:2057–2063CrossRefGoogle Scholar
  20. Madanala R, Gupta V, Singh PK, Tuli R (2012) Development of chloroplast transformation vectors, and a new target region in the tobacco plastid genome. Plant Biotechnol Rep 6:77–87CrossRefGoogle Scholar
  21. Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289–313PubMedCrossRefGoogle Scholar
  22. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  23. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325PubMedCentralPubMedCrossRefGoogle Scholar
  24. Nugent JM, Joyce SM (2005) Producing human therapeutic proteins in plastids. Curr Pharm Des 11:2459–2470PubMedCrossRefGoogle Scholar
  25. Peter OO, Shaukat HR (1989) A novel sequence element derived from bacteriophage T7 mRNA acts as an enhancer of translation of the lac2 gene in Escherichia coli. J Biolog Chem 264:16973–16976Google Scholar
  26. Prashanth SR, Sadhasivam V, Parida A (2008) Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in Indica rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Res 17:281–291PubMedCrossRefGoogle Scholar
  27. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Har:old Spring Harbor Laboratory Press, New YorkGoogle Scholar
  28. Sawant SV, Singh PK, Tuli R (2000) Pretreatment of micropojectiles to improve the delivery of DNA in plant transformation. Biotechniques 29:246–248PubMedGoogle Scholar
  29. Scharff LB, Bock R (2014) Synthetic biology in plastids. Plant J 78:783–798PubMedCrossRefGoogle Scholar
  30. Streatfeld SJ (2007) Approaches to achieve high-level heterologous protein production in plants. Plant Biotechnol J 5:2–15CrossRefGoogle Scholar
  31. Surzycki R, Greenham K, Kitayama K, Dibal F, Wagner R, Rochaix JD, Ajam T, Surzycki S (2009) Factors effecting expression of vaccines in microalgae. Biologicals 37(3):133–138PubMedCrossRefGoogle Scholar
  32. Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci U S A 90:913–917PubMedCentralPubMedCrossRefGoogle Scholar
  33. Tiwari S, Verma PC, Singh PK, Tuli R (2009) Plants as bioreactors for the production of vaccine antigens. Biotechnol Adv 27(4):449–67Google Scholar
  34. Tregoning JS, Nixon P, Kuroda H, Svab Z, Clare S, Bowe F, Fairweather N, Ytterberg J, vanWijk KJ, Dougan G, Maliga P (2003) Expression of tetanus toxin fragment C in tobacco chloroplasts. Nucleic Acids Res 31:1174–1179PubMedCentralPubMedCrossRefGoogle Scholar
  35. Tuli R, Sangwan RS, Kumar S, Bhattacharya S, Misra L, Mandal C, Raghubir R, Nath C, Trivedi PK, Tiwari SK, Mishra P, Chaturvedi P, Sangwan NS, Nair KN, Rawat AKS, Srivatsava V, Srivatsava RK, Ojha SK, Mehrotra S, Khanuja A, Suri KA (2009) A monograph, Aswagandha (Withania somnifera) a model Indian medicinal plant. (eds.) Tuli, R., Sangwan, R.S., CSIR, New Delhi, India. September, 2009. ISBN no: 978-93-80235Google Scholar
  36. Verma D, Kanagaraj A, Jin S, Singh ND, Kolattukudy PE, Daniell H (2010) Chloroplast-derived enzyme cocktails hydrolyse lignocellulosic biomass and release fermentable sugars. Plant Biotechnol J 8:332–350PubMedCentralPubMedCrossRefGoogle Scholar
  37. Yarbakht M, Jalali-Javaran M, Nikkhah M, Mohebodini M (2014) Dicistronic expression of human proinsulin-protein A fusion in tobacco chloroplast. Biotechnol Appl Biochem. doi:10.1002/bab.1230 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Raju Madanala
    • 1
  • Vijayta Gupta
    • 2
  • Ashutosh Kumar Pandey
    • 1
  • Subhi Srivastava
    • 1
  • Vivek Pandey
    • 1
  • Pradhyumna Kumar Singh
    • 1
  • Rakesh Tuli
    • 3
  1. 1.National Botanical Research InstituteCouncil of Scientific and Industrial Research (CSIR)LucknowIndia
  2. 2.Central Institute of Medicinal and Aromatic PlantsCouncil of Scientific and Industrial ResearchLucknowIndia
  3. 3.Department of BiotechnologyNational Agri-Food Biotechnology InstituteMohaliIndia

Personalised recommendations