Plant Molecular Biology Reporter

, Volume 33, Issue 2, pp 316–325 | Cite as

Construction of a High-Density Simple Sequence Repeat Consensus Genetic Map for Pear (Pyrus spp.)

  • Hui Chen
  • Yue Song
  • Lei-Ting Li
  • M. Awais Khan
  • Xiu-Gen Li
  • Schuyler S. Korban
  • Jun Wu
  • Shao-Ling Zhang
Original Paper


As an important fruit crop that is widely grown commercially in temperate regions of the world, pear (Pyrus) is a target for pursuing efficient breeding strategies. Construction of a reliable and dense genetic linkage map is critical for undertaking marker-assisted breeding. In this study, a population of 56 F1 seedlings of ‘Bayuehong’ × ‘Dangshansuli’ was used to construct a high-density simple sequence repeat (SSR)-based genetic linkage map. A total of 1,756 SSR markers, including 1,341 newly designed SSRs based on whole-genome sequencing of an Asiatic pear along with 415 previously reported SSRs, were first evaluated for polymorphism. Based on 894 SSRs demonstrating polymorphism, a consensus genetic map consisting of 734 loci distributed along all 17 linkage groups (LG) was constructed, with a total length of 1,661.4 cM and with an average marker interval of 2.26 cM. Comparisons among different maps of pear and apple were then made based on positions of previously mapped SSR markers on the consensus map. As a result, homologous linkage groups LG3 and LG11, LG5 and LG10, LG9 and LG17, LG13 and LG16, LG8 and LG15 have been identified. This high-density SSR map along with a set of SSR markers covering the whole genome of pear will greatly facilitate integration of independent maps, aid in pursuing comparative genome studies, and in evaluation of different germplasm in future genetic and breeding studies.


Pear (Pyrus spp.) SSR Genetic map Comparative genetics 



This work was supported by the earmarked fund for China Agriculture Research System (CARS-29), National Natural Science Foundation of China (31230063 and 31171928), the Fundamental Research Funds for the Central Universities (KYZ201146), and the National Science and Technology Ministry (2013AA102606-02).

Supplementary material

11105_2014_745_MOESM1_ESM.doc (76 kb)
Figure S1 Alignment of our consensus map with other published pear maps using common SSRs. LG1 to17 are from the pear consensus map constructed in this study (Fig. 1), in the center; Ba1 to 17 are from the map of European pear ‘Bartlett’ (Ba) map (Yamamoto et al. 2007), on the left; Ho1 to 17 are from Asian pear ‘Hosui’ (Ho) map linkage groups (Terakami et al. 2009), on the right. The linkage groups show common markers among the three maps, and the interval distances between two adjacent markers. Markers in red are those located in different groups in our consensus map compared with those of other pear maps. (DOC 76 kb)
11105_2014_745_MOESM2_ESM.doc (107 kb)
Figure S2 Comparison of the pear consensus map with ‘Fiesta’ (F) and ‘Co-op 17’ × ‘Co-op 16’ (Co) apple maps with common SSR markers. Apple ‘Fiesta’ (F) (Silfverberg-Dilworth et al. 2006) and ‘Co-op 17’ × ‘Co-op 16’ (Co) maps (Han et al. 2011) are shown on the left and right respectively, the pear consensus map (LG) (Fig. 1) is shown in the center. The linkage groups show common markers among the three maps and the interval distances between two adjacent markers. Markers in red are those that were located in different groups in our consensus map compared with those of other pear maps. (DOC 107 kb)
11105_2014_745_MOESM3_ESM.xls (440 kb)
ESM 3 (XLS 440 kb)


  1. Bell RL (1990) Pears (Pyrus). In: Moore JN, Ballington JR (eds) Genetic resources of temperate fruit and nut crops I. International Society for Horticultural Science, Wageningen, The Netherlands, pp 655–697Google Scholar
  2. Bell RL, Quamme HA, Layne REC, Skirvin RM (1996) Pears. In: Janick J, Moore JN (eds) Fruit breeding. Volume I: Tree and tropical fruits. Wiley, UK, pp 441–514Google Scholar
  3. Bushakra J, Stephens M, Atmadjaja A, Lewers K, Symonds V, Udall J, Chagné D, Buck E, Gardiner S (2012) Construction of black (Rubus occidentalis) and red (R. idaeus) raspberry linkage maps and their comparison to the genomes of strawberry, apple, and peach. Theor Appl Genet 125:311–327CrossRefPubMedGoogle Scholar
  4. Cabrera A, Kozik A, Howad W, Arus P, Iezzoni A, Knaap E (2009) Development and bin mapping of a Rosaceae Conserved Ortholog Set (COS) of markers. BMC Genomics 10:562CrossRefPubMedCentralPubMedGoogle Scholar
  5. Celton JM, Tustin D, Chagné D, Gardiner S (2009a) Construction of a dense genetic linkage map for apple rootstocks using SSRs developed from Malus ESTs and Pyrus genomic sequences. Tree Genet Genomes 5:93–107CrossRefGoogle Scholar
  6. Celton JM, Chagné D, Tustin SD, Terakami S, Nishitani C, Yamamoto T, Gardiner SE (2009b) Update on comparative genome mapping between Malus and Pyrus. BMC Res Notes 2(1):182CrossRefPubMedCentralPubMedGoogle Scholar
  7. Chakravarti A, Lasher LK, Reefer JE (1991) A maximum likelihood method for estimating genome length using genetic linkage data. Genetics 128:175–182PubMedCentralPubMedGoogle Scholar
  8. Dirlewanger E, Graziano E, Joobeur T, Garriga-Calderé F, Cosson P, Howad W, Arús P (2004) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci USA 101:9891–9896CrossRefPubMedCentralPubMedGoogle Scholar
  9. Dondini L, Pierantoni L, Gaiotti F, Chiodini R, Tartarini S, Bazzi C, Sansavini S (2005) Identifying QTLs for fire-blight resistance via a European pear (Pyrus communis L.) genetic linkage map. Mol Breed 14:407–418CrossRefGoogle Scholar
  10. Ellegren H, Moore S, Robinson N, Byrne K, Ward W, Sheldon BC (1997) Microsatellite evolution–a reciprocal study of repeat lengths at homologous loci in cattle and sheep. Mol Biol Evol 14:854–860CrossRefPubMedGoogle Scholar
  11. Fan L, Zhang MY, Liu QZ, Li LT, Song Y, Wang LF, Zhang SL, Wu J (2013) Transferability of Newly Developed Pear SSR Markers to Other Rosaceae Species. Plant Mol Biol Report 31(6):1271–1282CrossRefPubMedCentralPubMedGoogle Scholar
  12. Fernándz F, Harvey N, James C (2006) Isolation and characterization of polymorphic microsatellite markers from European pear (Pyrus communis L.). Mol Ecol Notes 6:1039–1041CrossRefGoogle Scholar
  13. Fishman L, Kelly AJ, Morgan E, Willis JH (2001) A genetic map in the Mimulus guttatus species complex reveals transmission ratio distortion due to heterospecific interactions. Genetics 159:1701–1716PubMedCentralPubMedGoogle Scholar
  14. Gasic K, Han Y, Kertbundit S, Shulaev V, Iezzoni AF, Stover EW, Bell RL, Wisniewski ME, Korban SS (2009) Characteristics and transferability of new apple EST-derived SSRs to other Rosaceae species. Mol Breed 23:397–411CrossRefGoogle Scholar
  15. Gianfranceschi L, Seglias N, Tarchini R, Komjanc M, Gessler C (1998) Simple sequence repeats for the genetic analysis of apple. Theor Appl Genet 96:1069–1076CrossRefGoogle Scholar
  16. Guilford P, Prakash S, Zhu J, Rikkerink E, Gardiner S, Bassett H, Forster R (1997) Microsatellites in Malus × domestica (apple): abundance, polymorphism and cultivar identification. Theor Appl Genet 94:249–254CrossRefGoogle Scholar
  17. Han Y, Zheng D, Vimolmangkang S, Khan MA, Beever JE, Korban SS (2011) Integration of physical and genetic maps in apple confirms whole-genome and segmental duplications in the apple genome. J Exp Bot 62:5117–5130CrossRefPubMedCentralPubMedGoogle Scholar
  18. Hasebe M, Iwatsuki K (1990) Adiantum capillus-veneris chloroplast DNA clone bank: as useful heterologous probes in the systematics of the leptosporangiate ferns. Am Fern J 80:20–25CrossRefGoogle Scholar
  19. Iketani H, Abe K, Yamamoto T, Kotobuki K, Sato Y, Saito T, Terai O, Matsuta N, Hayashi T (2001) Mapping of disease-related genes in Japanese pear using a molecular linkage map with RAPD markers. Breed Sci 51:179–184CrossRefGoogle Scholar
  20. Illa E, Sargent DJ, Girona EL, Bushakra J, Cestaro A, Crowhurst R, Pindo M, Cabrera A, van der Knaap E, Iezzoni A (2011) Comparative analysis of rosaceous genomes and the reconstruction of a putative ancestral genome for the family. BMC Evol Biol 11:9CrossRefPubMedCentralPubMedGoogle Scholar
  21. Inoue E, Matsuki Y, Anzai H, Evans K (2007) Isolation and characterization of microsatellite markers in Japanese pear (Pyrus pyrifolia Nakai). Mol Ecol Notes 7:445–447CrossRefGoogle Scholar
  22. Iwata H, Hayashi T, Terakami S, Takada N, Sawamura Y, Yamamoto T (2013) Potential assessment of genome-wide association study and genomic selection in Japanese pear Pyrus pyrifolia. Breed Sci 63:125–140CrossRefPubMedCentralPubMedGoogle Scholar
  23. Jung S, Cestaro A, Troggio M, Main D, Zheng P, Cho I, Folta KM, Sosinski B, Abbott A, Celton JM (2012) Whole genome comparisons of Fragaria, Prunus and Malus reveal different modes of evolution between Rosaceous subfamilies. BMC Genomics 13:129CrossRefPubMedCentralPubMedGoogle Scholar
  24. Kantety RV, La Rota M, Matthews DE, Sorrells ME (2002) Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol 48:501–510CrossRefPubMedGoogle Scholar
  25. Liebhard R, Gianfranceschi L, Koller B, Ryder C, Tarchini R, Van de Weg E, Gessler C (2002) Development and characterisation of 140 new microsatellites in apple (Malus × domestica Borkh.). Mol Breed 10:217–241CrossRefGoogle Scholar
  26. Lu M, Tang H, Chen X, Gao J, Chen Q, Lin L (2010) Comparative genome mapping between apple and pear by apple mapped SSR markers. Am-Eurasian J Agric Environ Sci 9:303–309Google Scholar
  27. Maliepaard C, Alston F, Van Arkel G, Brown L, Chevreau E, Dunemann F, Evans K, Gardiner S, Guilford P, Van Heusden A (1998) Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor Appl Genet 97:60–73CrossRefGoogle Scholar
  28. Montanari S, Saeed M, Knäbel M, Kim Y, Troggio M, Malnoy M, Velasco R, Fontana P, Won K, Durel CE, Perchepied L, Schaffer R, Wiedow C, Bus V, Brewer L, Gardiner SE, Crowhurst RN, Chagné D (2013) Identification of Pyrus single nucleotide polymorphisms (SNPs) and evaluation for genetic mapping in European pear and interspecific Pyrus hybrids. PLoS One 8:e77022CrossRefPubMedCentralPubMedGoogle Scholar
  29. Nishitani C, Terakami S, Sawamura Y, Takada N, Yamamoto T (2009) Development of novel EST-SSR markers derived from Japanese pear (Pyrus pyrifolia). Breed Sci 59:391–400CrossRefGoogle Scholar
  30. Pierantoni L, Cho KH, Shin IS, Chiodini R, Tartarini S, Dondini L, Kang SJ, Sansavini S (2004) Characterisation and transferability of apple SSRs to two European pear F1 populations. Theor Appl Genet 109:1519–1524CrossRefPubMedGoogle Scholar
  31. Sawamura Y, Saito T, Takada N, Yamamoto T, Kimura T, Hayashi T, Kotobuki K (2004) Identification of parentage of Japanese pear ‘Housui’. J Jpn Soc Horticult Sci 73:511–518CrossRefGoogle Scholar
  32. Silfverberg-Dilworth E, Matasci C, Van de Weg W, Van Kaauwen M, Walser M, Kodde L, Soglio V, Gianfranceschi L, Durel C, Costa F (2006) Microsatellite markers spanning the apple (Malus × domestica Borkh.) genome. Tree Genet Genomes 2:202–224CrossRefGoogle Scholar
  33. Tanksley S, Young N, Paterson A, Bonierbale M (1989) RFLP mapping in plant breeding: new tools for an old science. Nat Biotechnol 7:257–264CrossRefGoogle Scholar
  34. Temnykh S, Park WD, Ayres N, Cartinhour S, Hauck N, Lipovich L, Cho YG, Ishii T, Mccouch SR (2000) Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor Appl Genet 100:697–712CrossRefGoogle Scholar
  35. Terakami S, Kimura T, Nishitani C, Sawamura Y, Saito T, Hirabayashi T, Yamamoto T (2009) Genetic linkage map of the Japanese pear 'Housui' identifying three homozygous genomic regions. J Jpn Soc Horticult Sci 78:417–424CrossRefGoogle Scholar
  36. Terakami S, Nishitani C, Kunihisa M, Shirasawa K, Sato S, Tabata S, Kurita K, Kanamori H, Katayose Y, Takada N (2014) Transcriptome-based single nucleotide polymorphism markers for genome mapping in Japanese pear (Pyrus pyrifolia Nakai). Tree Genet Genomes. doi: 10.1007/s11295-014-0726-0 Google Scholar
  37. Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839CrossRefPubMedGoogle Scholar
  38. Vezzulli S, Micheletti D, Riaz S, Pindo M, Viola R, This P, Walker MA, Troggio M, Velasco R (2008) A SNP transferability survey within the genus Vitis. BMC Plant Biol 8:128CrossRefPubMedCentralPubMedGoogle Scholar
  39. Vilanova S, Sargent D, Arús P, Monfort A (2008) Synteny conservation between two distantly-related Rosaceae genomes: Prunus (the stone fruits) and Fragaria (the strawberry). BMC Plant Biol 8:67CrossRefPubMedCentralPubMedGoogle Scholar
  40. Weber JL, May PE (1989) Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet 44:388PubMedCentralPubMedGoogle Scholar
  41. Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, Khan MA, Tao S, Korban SS, Wang H, Chen NJ, Nishio T, Xu X, Cong L, Qi K, Huang X, Wang Y, Zhao X, Wu J, Deng C, Gou C, Zhou W, Yin H, Qin G, Sha Y, Tao Y, Chen H, Yang Y, Song Y, Zhan D, Wang J, Li L, Dai M, Gu C, Wang Y, Shi D, Wang X, Zhang H, Zeng L, Zheng D, Wang C, Chen M, Wang G, Xie L, Sovero V, Sha S, Huang W, Zhang S, Zhang M, Sun J, Xu L, Li Y, Liu X, Li Q, Shen J, Wang J, Paull RE, Bennetzen JL, Wang J, Zhang S (2013) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23:396–408CrossRefPubMedCentralPubMedGoogle Scholar
  42. Wünsch A, Hormaza J (2007) Characterization of variability and genetic similarity of European pear using microsatellite loci developed in apple. Sci Hortic 113:37–43CrossRefGoogle Scholar
  43. Yamamoto T, Kimura T, Sawamura Y, Kotobuki K, Ban Y, Hayashi T, Matsuta N (2001) SSRs isolated from apple can identify polymorphism and genetic diversity in pear. Theor Appl Genet 102:865–870CrossRefGoogle Scholar
  44. Yamamoto T, Kimura T, Sawamura Y, Manabe T, Kotobuki K, Hayashi T, Ban Y, Matsuta N (2002a) Simple sequence repeats for genetic analysis in pear. Euphytica 124:129–137CrossRefGoogle Scholar
  45. Yamamoto T, Kimura T, Shoda M, Ban Y, Hayashi T, Matsuta N (2002b) Development of microsatellite markers in the Japanese pear (Pyrus pyrifolia Nakai). Mol Ecol Notes 2:14–16CrossRefGoogle Scholar
  46. Yamamoto T, Kimura T, Shoda M, Imai T, Saito T, Sawamura Y, Kotobuki K, Hayashi T, Matsuta N (2002c) Genetic linkage maps constructed by using an interspecific cross between Japanese and European pears. Theor Appl Genet 106:9–18PubMedGoogle Scholar
  47. Yamamoto T, Kimura T, Terakami S, Nishitani C, Sawamura Y, Saito T, Kotobuki K, Hayashi T (2007) Integrated reference genetic linkage maps of pear based on SSR and AFLP markers. Breed Sci 57:321–329CrossRefGoogle Scholar
  48. Zhang R, Wu J, Li X, Khan MA, Chen H, Korban SS, Zhang S (2013) An AFLP, SRAP, and SSR genetic linkage map and identification of QTLs for fruit traits in pear (Pyrus L.). Plant Mol Biol Report 31:678–687CrossRefGoogle Scholar
  49. Zhao Y, Prakash CS, He G (2012) Characterization and compilation of polymorphic simple sequence repeat (SSR) markers of peanut from public database. BMC Res Notes 5:362. doi: 10.1186/1756-0500-5-362 CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Hui Chen
    • 1
  • Yue Song
    • 1
  • Lei-Ting Li
    • 1
  • M. Awais Khan
    • 2
    • 4
  • Xiu-Gen Li
    • 3
  • Schuyler S. Korban
    • 2
    • 5
  • Jun Wu
    • 1
  • Shao-Ling Zhang
    • 1
  1. 1.College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
  2. 2.Department of Natural Resources and Environmental SciencesUniversity of IllinoisUrbanaUSA
  3. 3.Zhengzhou Fruit Research instituteCAASZhengzhouChina
  4. 4.International Potato Center (CIP)LimaPeru
  5. 5.Department of BiologyUniversity of Massachusetts-BostonBostonUSA

Personalised recommendations