Advertisement

Plant Molecular Biology Reporter

, Volume 32, Issue 3, pp 719–731 | Cite as

Overexpression of Transcription Factor OsWR2 Regulates Wax and Cutin Biosynthesis in Rice and Enhances its Tolerance to Water Deficit

  • Xiaoyun Zhou
  • Matthew A. Jenks
  • Juan Liu
  • Ailing Liu
  • Xiangwen Zhang
  • Jianhua Xiang
  • Jie Zou
  • Yan Peng
  • Xinbo ChenEmail author
Original Paper

Abstract

Drought is the major abiotic stress limiting crop production. Plant cuticle represents the outer-most layer of the epidermis and plays an important role in decreasing plant water loss under drought stress by restricting non-stomatal transpiration. We report here that the Wax Synthesis Regulatory 2 gene (OsWR2) in rice (Oryza sativa L.) is highly expressed in epidermal tissues and contributes to the transcriptional regulation of both cuticular wax and cutin biosynthesis in rice cuticle. Overexpression of OsWR2 in rice increased the total cuticular wax level by 48.6 % in leaves and by 72.4 % in panicles. Of the major wax classes, aldehydes increased most in leaves, and alkanes increased most in panicles. Total cutin amounts were increased by 48.1 % in leaves and 65.9 % in panicles of rice overexpressing OsWR2, and these increases were due primarily to the increase in ω-OH and di-OH acids. Our results showed that 19 genes previously associated with wax and cutin biosynthesis were up-regulated in OsWR2 overexpressors. Overexpression of OsWR2 also altered cuticular wax crystallization and cuticle membrane ultrastructure. Furthermore, OsWR2 overexpression in rice decreased leaf chlorophyll leaching rate, reduced water loss rate, and enhanced tolerance to water-limited conditions. We demonstrate in this report that OsWR2 regulates wax and cutin biosynthesis differently than does the OsWR1 homologue, and plays a major role in controlling cuticle permeability. The increased resistance to water deficit conditions by OsWR2 overexpression in rice elucidates a potential new strategy for genetic improvement of plant drought tolerance.

Keywords

Plant cuticle Drought tolerance Wax Cutin Overexpression 

Notes

Acknowledgments

This work was supported by Natural Science Foundation of China (30870206), The Education Ministry Program for Innovative Research Team in University (IRT1239), Hunan Agricultural University Science Foundation (09WD31) and the Construct Program of the Key Discipline in Hunan Province.

Supplementary material

11105_2013_687_MOESM1_ESM.docx (14 kb)
Table S1 (DOCX 13 kb)
11105_2013_687_MOESM2_ESM.docx (477 kb)
Fig. S1 (DOCX 476 kb)

References

  1. Aharoni A, Dixit S, Jetter R, Thoenes E, van Arkel G, Pereira A (2004) The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell 16:2463–2480PubMedCentralPubMedCrossRefGoogle Scholar
  2. Araus JL, Febrero A, Vendrell P (1991) Epidermal conductance in different parts of durum wheat grown under mediterranean conditions: the role of epicuticular waxes and stomata. Plant Cell Environ 14:545–558CrossRefGoogle Scholar
  3. Beaudoin F, Wu X, Li F, Haslam RP, Markham J, Zheng H, Napier J, Kunst L (2009) Functional characterization of the Arabidopsis β-ketoacyl-coenzyme A reductase candidates of the fatty acid elongase. Plant Physiol 150(3):1174–1191PubMedCentralPubMedCrossRefGoogle Scholar
  4. Bernard A, Joubès J (2013) Arabidopsis cuticular waxes: advances in synthesis, export and regulation. Prog Lipid Res 52:110–129PubMedCrossRefGoogle Scholar
  5. Bernard A, Domergue F, Pascal R, Jetter S, Renne C, Faure JD, Haslam RP, Napier JA, Lessire R, Joubès J (2012) Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex. Plant Cell 24:3106–3118PubMedCentralPubMedCrossRefGoogle Scholar
  6. Bessire M, Chassot C, Jacquat AC, Humphry M, Borel S, Petétot JC, Métreaux JP, Nawrath C (2007) A permeable cuticle in Arabidopsis leads a strong resistance in Botrytis cinera. EMBO J 26:2158–2168PubMedCentralPubMedCrossRefGoogle Scholar
  7. Bonaventure G, Salas JJ, Pollard MR, Ohlrogge J (2003) Disruption of the FATB gene in Arabidopsis demonstrates an essential role of saturated fatty acids in plant growth. Plant Cell 15(4):1020–1033PubMedCentralPubMedCrossRefGoogle Scholar
  8. Bourdenx B, Bernard A, Domergue F, Pascal S, Léger A, Roby D, Pervent M, Vile D, Haslam R, Napier J, Lessire R, Joubès J (2011) Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. Plant Physiol 156:29–45PubMedCentralPubMedCrossRefGoogle Scholar
  9. Broun P, Poindexter P, Osborne E, Jiang C, Riechmann J (2004) WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. Proc Natl Acad Sci USA 101:4706–4711PubMedCentralPubMedCrossRefGoogle Scholar
  10. Chen X, Goodwin S, Boroff V, Liu X, Jenks M (2003) Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production. Plant Cell 15:1170–1185PubMedCentralPubMedCrossRefGoogle Scholar
  11. Fiebig A, Mayfield JA, Miley NL, Chau S, Fischer R, Preuss D (2000) Alterations in CER6, a gene identical to CUT1, differentially affect long-chain lipid content on the surface of pollen and stems. Plant Cell 12:2001–2008PubMedCentralPubMedCrossRefGoogle Scholar
  12. Goodwin SM, Jenks MA (2005) Plant cuticle function as a barrier to water loss. In: Jenks M, Hasegawa PM (eds) Plant abiotic stress. Blackwell, Oxford, pp 14–36CrossRefGoogle Scholar
  13. Greer S, Wen M, Bird D, Wu X, Samuels L, Kunst L, Jetter R (2007) The cytochrome P450 enzyme CYP96A15 is the midchain alkane hydroxylase responsible for formation of secondary alcohols and ketones in stem cuticular wax of Arabidopsis. Plant Physiol 145:653–667PubMedCentralPubMedCrossRefGoogle Scholar
  14. Grncarevic M, Radler F (1967) The effect of wax components on cuticular transpiration-model experiments. Planta 75:23–27PubMedCrossRefGoogle Scholar
  15. Havaux M, Lütz C, Grimmol LB (2003) Chloroplast membrane photostability in chlP transgenic tobacco plants deficient in tocopherols. Plant Physiol 132:300–310PubMedCentralPubMedCrossRefGoogle Scholar
  16. Heredia-Guerrero JA, Benítez JJ, Heredia A (2008) Self-assembled polyhydroxy fatty acids vesicles: a mechanism for plant cutin synthesis. Bioessays 30(3):273–277PubMedCrossRefGoogle Scholar
  17. Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282PubMedCrossRefGoogle Scholar
  18. Hooker TS, Millar AA, Kunst L (2002) Significance of the expression of the CER6 condensing enzyme for cuticular wax production in Arabidopsis. Plant Physiol 129(4):1568–1580PubMedCentralPubMedCrossRefGoogle Scholar
  19. Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5(4):387–405CrossRefGoogle Scholar
  20. Kannangara R, Branigan C, Liu Y, Penfield T, Rao V, Mouille G, Höfte H, Pauly M, Riechmann JL, Broun P (2007) The transcription factor WIN1/SHN1 regulates cutin biosynthesis in Arabidopsis thaliana. Plant Cell 19:1278–1294PubMedCentralPubMedCrossRefGoogle Scholar
  21. Kosma DK, Bourdenx B, Bernard A, Parsons EP, Lü S, Joubès J, Jenks MA (2009) The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiol 151:1918–1929PubMedCentralPubMedCrossRefGoogle Scholar
  22. Kunst L, Samuels L (2009) Plant cuticles shine: advances in wax biosynthesis and export. Curr Opin Plant Biol 12:721–727PubMedCrossRefGoogle Scholar
  23. Kurdyukov S, Faust A, Nawrath C, Ba S, Voisin D, Efremova N, Franke R, Schreiber L, Saedler H, Metraux JP, Yephremova A (2006) The epidermis-specific extracellular BODYGUARD controls cuticle development and morphogenesis in Arabidopsis. Plant Cell 18:321–339PubMedCentralPubMedCrossRefGoogle Scholar
  24. Lai C, Kunst L, Jetter R (2007) Composition of alkyl esters in the cuticular wax on inflorescence stems of Arabidopsis thaliana cer mutants. Plant J 50:189–196PubMedCrossRefGoogle Scholar
  25. Li F, Wu X, Bird D, Zheng H, Samuels AL, Jetter R, Kunst L (2008) Identification of the wax ester synthase/acyl-coenzyme A: diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis. Plant Physiol 148:97–107Google Scholar
  26. Li H, Pinot F, Sauveplane V, Werck-Reichhart D, Diehl P, Schreiber L, Franke R, Zhang P, Chen L, Gao Y, Liang W, Zhang D (2010) Cytochrome P450 family member CYP704B2 catalyzes the ω-hydroxylation of fatty acids and is required for anther cutin biosynthesis and pollen exine formation in rice. Plant Cell 22:173–190PubMedCentralPubMedCrossRefGoogle Scholar
  27. Lolle SJ, Hsu W, Pruitt RE (1998) Genetic analysis of organ fusion in Arabidopsis thaliana. Genetics 149:607–619PubMedCentralPubMedGoogle Scholar
  28. Lü S, Song T, Kosma DK, Parsons EP, Rowland O, Jenks MA (2009) Arabidopsis CER8 encodes LONG-CHAIN ACYL-COA SYNTHETASE 1 (LACS1) that has overlapping functions with LACS2 in plant wax and cutin synthesis. Plant J 59:553–564PubMedCrossRefGoogle Scholar
  29. Mao B, Cheng Z, Lei C, Xu F, Gao S, Ren Y, Wang J, Zhang X, Wang J, Wu F, Guo X, Liu X, Wu C, Wang H, Wan J (2011) Wax crystal-sparse leaf 2, a rice homologue of WAX2/GL1, is involved in synthesis of leaf cuticular wax. Planta 235(1):39–52PubMedCrossRefGoogle Scholar
  30. Mietkiewska E, Giblin EM, Wang S, Barton DL, Dirpaul J, Brost JM, Katavic V, Taylor DC (2004) Seed-specific heterologous expression of a nasturtium FAE gene in Arabidopsis results in a dramatic increase in the proportion of erucic acid. Plant Physiol 136(1):2665–2675PubMedCentralPubMedCrossRefGoogle Scholar
  31. Millar AA, Clemens S, Zachgo S, Giblin EM, Taylor DC, Kunst L (1999) CUT1, an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long-chain fatty acid condensing enzyme. Plant Cell 11:825–838PubMedCentralPubMedCrossRefGoogle Scholar
  32. Oliveira AF, Meirelles ST, Salatino A (2003) Epicuticular waxes from caatinga and cerrado species and their efficiency against water loss. An Acad Bras Cienc 75(4):431–439PubMedCrossRefGoogle Scholar
  33. Quan R, Hu S, Zhang Z, Zhang H, Zhang Z, Huang R Quan R et al (2010) Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance. Plant Biotechnol J 8:476–488Google Scholar
  34. Park J, Jin P, Yoon J, Yang J, Jeong H, Ranathunge K, Schreiber L, Franke R, Lee I, An G (2010) Mutation in Wilted Dwarf and Lethal 1 (WDL1) causes abnormal cuticle formation and rapid water loss in rice. Plant Mol Biol 74:91–103PubMedCrossRefGoogle Scholar
  35. Paul S, Gable K, Beaudoin F, Cahoon E, Jaworski J, Napier JA, Dunn TM (2006) Members of the Arabidopsis FAE1-like 3-ketoacyl-CoA synthase gene family substitute for the Elop proteins of Saccharomyces cerevisiae. J Biol Chem 281(14):9018–9029PubMedCrossRefGoogle Scholar
  36. Pruitt RE, Vielle-Calzada J, Ploense S, Grossniklaus U, Lolle SJ (2000) FIDDLEHEAD, a gene required to suppress epidermal cell interactions in Arabidopsis, encodes a putative lipid biosynthetic enzyme. Proc Natl Acad Sci USA 97(3):1311–1316PubMedCentralPubMedCrossRefGoogle Scholar
  37. Riederer M, Schreiber L (2001) Protecting against water loss: analysis of the barrier properties of plant cuticles. J Exp Bot 52:2023–2032PubMedCrossRefGoogle Scholar
  38. Rowland O, Zheng H, Hepworth SR, Lam P, Jetter R, Kunst L (2006) CER4 encodes an alcohol-forming fatty acyl-coenzyme a reductase involved in cuticular wax production in Arabidopsis. Plant Physiol 142:866–877PubMedCentralPubMedCrossRefGoogle Scholar
  39. Schnurr J, Shockey J, Browse J (2004) The acyl-CoA synthetase encoded by LACS2 is essential for normal cuticle development in Arabidopsis. Plant Cell 16:629–642PubMedCentralPubMedCrossRefGoogle Scholar
  40. Schroeder JI, Kwak JM, Allen GJ (2001) Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature 327–33Google Scholar
  41. Seo PJ, Xiang F, Qiao M, Park JY, Lee YN, Kim SG, Lee YH, Park WJ, Park CM(2009) The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis. Plant Physiol 151:275–289Google Scholar
  42. Seo PJ, Lee SB, Suh MC, Park MJ, Go YS, Parka CM (2011) The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell 23:1138–1152PubMedCentralPubMedCrossRefGoogle Scholar
  43. Sirichandra C, Wasilewska A, Vlad F, Valon C, Leung J (2009) The guard cell as a single-cell model towards understanding drought tolerance and abscisic acid action. J Exp Bot 60:1439–1463PubMedCrossRefGoogle Scholar
  44. Sturaro M, Hartings H, Schmelzer E, Velasco R, Salamini F, Motto M (2005) Cloning and characterization of GLOSSY1, a maize gene involved in cuticle membrane and wax production. Plant Physiol 138:478–489PubMedCentralPubMedCrossRefGoogle Scholar
  45. Suh MC, Samuels AL, Jetter R, Kunst L, Pollard M, Ohlrogge J, Beisson F (2005) Cuticular lipid composition, surface structure, and gene expression in Arabidopsis stem epidermis. Plant Physiol 139:1649–1665PubMedCentralPubMedCrossRefGoogle Scholar
  46. Tang N, Zhang H, Li X, Xiao J, Xiong L (2012) Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice. Plant Physiol 158:1755–1768. doi: 10.1104/pp.111.190389 Google Scholar
  47. Todd J, Post-Beittenmiller D, Jaworski JG (1999) KCS1 encodes a fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana. Plant J 17:119–130PubMedCrossRefGoogle Scholar
  48. Vogg G, Fischer S, Leide J, Emmanuel E, Jetter R, Levy AA, Riederer M (2004) Tomato fruit cuticular waxes and their effects on transpiration barrier properties: functional characterization of a mutant deficient in a very-long-chain fatty acid β-ketoacyl-CoA synthase. J Exp Bot 55(401):1401–1410PubMedCrossRefGoogle Scholar
  49. Wang Y, Wan L, Zhang L, Zhang Z, Zhang H, Quan R, Zhou S, Huang R (2012) An ethylene response factor OsWR1 responsive to drought stress transcriptionally activates wax synthesis related genes and increases wax production in rice. Plant Mol Biol 78(3):275–288PubMedCrossRefGoogle Scholar
  50. Xia Y, Nikolau BJ, Schnable PS (1996) Molecular cloning and characterization of CER2, an Arabidopsis gene that affect cuticular wax accumulation. Plant Cell 8: 1291–1304Google Scholar
  51. Yeats TH, Rose JKC (2013) The formation and function of plant cuticles. Plant Physiol 163:5–20PubMedCrossRefGoogle Scholar
  52. Zhang JY, Broeckling CD, Blancaflor EB, Sledge MK, Sumner LW, Wang ZY (2005) Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J 42:689–707PubMedCrossRefGoogle Scholar
  53. Zhang JY, Broeckling CD, Sumner LW, Wang ZY (2007) Heterologous expression of two Medicago truncatula putative ERF transcription factor genes, WXP1 and WXP2, in Arabidopsis led to increased leaf wax accumulation and improved drought tolerance, but differential response in freezing tolerance. Plant Mol Biol 64:265–278PubMedCrossRefGoogle Scholar
  54. Zheng H, Rowland O, Kunst L (2005) Disruptions of the Arabidopsis Enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis. Plant Cell 17(5):1467–1481PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Xiaoyun Zhou
    • 1
    • 2
  • Matthew A. Jenks
    • 3
  • Juan Liu
    • 1
  • Ailing Liu
    • 1
    • 2
  • Xiangwen Zhang
    • 1
    • 2
  • Jianhua Xiang
    • 1
  • Jie Zou
    • 1
  • Yan Peng
    • 1
  • Xinbo Chen
    • 1
    • 2
    Email author
  1. 1.Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of CropHunan Agricultural UniversityChangshaChina
  2. 2.College of Bioscience and BiotechnologyHunan Agricultural UniversityChangshaChina
  3. 3.United States Arid Land Agricultural Research CenterUSDA-ARSMaricopaUSA

Personalised recommendations