Plant Molecular Biology Reporter

, Volume 32, Issue 2, pp 605–616 | Cite as

Genome-wide Analysis of Zinc Transporter Genes of Maize (Zea mays)

  • Tapan Kumar MondalEmail author
  • Showkat Ahmad Ganie
  • Mukesh Kumar Rana
  • Tilak Raj Sharma
Brief Communication


Zinc (Zn) is an essential micronutrient for plants and animals. Zinc-regulated transporters and iron-regulated transporter-like proteins (ZIP) are important zinc transporters in plants with the characteristic ZIP domain (Pfam:PF02535). Although individual genes belonging to the ZIP family had been discovered in various plants, genome-wide analysis of the paralouges (ZmZIP) in maize and their relationships with other related genera has so far not been conducted. We performed a genome-wide analysis and identified 12 members of the ZIP gene family in maize. Chromosomal locations, motif organization, and biochemical characterizations of proteins, as well as exon–intron, trans-membrane domains of these ZmZIP genes were determined, which indicated the structural diversity of ZmZIP. Additionally, apart from the identification of the canonical form of the metal binding signature in ZIP domains of the ZmZIP proteins, we also identified a new conserved plant ZIP signature. Further, tissue-specific expressions of those genes were determined by real-time PCR in the flag leaf as well as in 10-day-old-baby kernel among the high and low kernel zinc-containing maize inbreds. We found that overall transcript abundance was higher in the flag leaf than the kernel in both the inbreds for all the members except two, namely ZmZIP5 and ZmZIP11 were expressed more in flag leaf of a high-kernel zinc-containing inbreds than a low- kernel zinc-containing inbreds. Therefore, these results provide a basis for further functional characterization of specific ZmZIP genes in the future.


Abiotic stress Biofortification Zinc transporter Zea mays Zinc use efficiency 



The authors are grateful to Dr. K.V. Bhat, Head, Division of Genetic Resource, NBPGR, New Delhi for his encouragement to conduct this work and Dr. P.K. Agrawal, Head, Plant Improvement Division, VPAS, Almora, India, for providing the maize inbred seeds. We are also grateful to anonymous authors for making genome sequence data available in the public domain. T.R.S. is thankful to ICAR, New Delhi, for financial assistance under the NPTC project. T.K.M is thankful to DBT, New Delhi for financial assistance.

Supplementary material

11105_2013_664_MOESM1_ESM.docx (14 kb)
Supplementary Table 1 (DOCX 14 kb)
11105_2013_664_MOESM2_ESM.docx (14 kb)
Supplementary Table 2 (DOCX 13 kb)
11105_2013_664_MOESM3_ESM.docx (14 kb)
Supplementary Table 3 (DOCX 14 kb)
11105_2013_664_MOESM4_ESM.docx (13 kb)
Supplementary Table 4 (DOCX 13 kb)
11105_2013_664_MOESM5_ESM.docx (3.2 mb)
Supplementary Fig. 1 (DOCX 3303 kb)
11105_2013_664_MOESM6_ESM.docx (249 kb)
Supplementary Fig. 2 (DOCX 248 kb)
11105_2013_664_MOESM7_ESM.docx (875 kb)
Supplementary Fig. 3 (DOCX 875 kb)
11105_2013_664_MOESM8_ESM.docx (231 kb)
Supplementary Fig. 4 (DOCX 230 kb)
11105_2013_664_MOESM9_ESM.docx (25 kb)
Supplementary Fig. 5 (DOCX 24 kb)


  1. Allagulova C, Gimalov F, Shakirova FV, Vakhitov V (2003) The plant dehydrins: structure and putative functions. Biochem 68:945–951Google Scholar
  2. Altenhoff AM, Dessimoz C (2009) Phylogenetic and functional assessment of orthologs inference projects and methods. PLoS Comput Biol 5: doi: 10.1371/journal.pcbi.1000262
  3. Assunção AGL, Martins da Costa P, de Folter S, Vooijs R, Schat H, Aarts MGM (2001) Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 24:217–226CrossRefGoogle Scholar
  4. Assunção AGL, Herrero E, Lin YF, Huettel B, Talukdar S, Smaczniak C, Immink RGH, Eldik MV, Fiers M, Schat H, Aarts MGM (2010) A. thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proc Natl Acad Sci USA 107:10296–10301PubMedCentralPubMedCrossRefGoogle Scholar
  5. Aydemir TB, Sitren HS, Cousins RJ (2012) The zinc transporter Zip14 Influences c-met phosphorylation and hepatocyte proliferation during liver regeneration in mice. Gastroenterology 142:1536–1546PubMedCentralPubMedCrossRefGoogle Scholar
  6. Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2:28–36PubMedGoogle Scholar
  7. Bailey TL, Gribskov M (1998) Combining evidence using p-values: application to sequence homology searches. Bioinform 14:48–54CrossRefGoogle Scholar
  8. Bashir K, Ishimaru Y, Nishizawa NK (2012) Molecular mechanisms of zinc uptake and translocation in rice. Plant Soil 361:189–201CrossRefGoogle Scholar
  9. Belouchi A, Kwan T, Gros P (1997) Cloning and characterization of the OsNramp family from Oryza sativa, a new family of membrane proteins possibly implicated in the transport of metal ions. Plant Mol Biol 33:1085–1092PubMedCrossRefGoogle Scholar
  10. Burleigh SH, Kristensen BK, Elldgarrd Bechmann I (2003) A plasma membrane zinc transporter from Medicaga truncatula is up-regulated in roots by Zn fertilization, yet down-regulated by arbuscular mycorrhizal colonization. Plant Mol Biol 52:1077–1088PubMedCrossRefGoogle Scholar
  11. Chakraborti M, Prasanna BM, Hossain F, Singh AM, Guleria SK (2009) Genetic evaluation of kernel Fe and Zn concentrations and yield performance of selected Maize (Zea mays L.) genotypes. Range Manag Agrofor 30:109–114Google Scholar
  12. Chen WR, Feng Y, Chao YE (2008) Genomic analysis and expression pattern of OsZIP1, OsZIP3, and OsZIP4 in two rice (Oryza sativa L.) genotypes with different zinc efficiency. Russ J Plant Physiol 55:400–409CrossRefGoogle Scholar
  13. Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190PubMedCentralPubMedCrossRefGoogle Scholar
  14. Eide DJ (1998) The molecular biology of metal ion transport in Saccaromyces cerevisiae. Annu Rev Nutr 18:460–469CrossRefGoogle Scholar
  15. Eide D, Broderius M, Fett J, Guerinot M (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci USA 93:5624–5628PubMedCentralPubMedCrossRefGoogle Scholar
  16. Eng BH, Gureinot ML, Eide D, Saier MH (1998) Sequence Analyses and Phylogenetic Characterization of the ZIP Family of Metal Ion Transport Proteins. J Membr Biol 166:1–7PubMedCrossRefGoogle Scholar
  17. Gaither LA, Eide DJ (2001) Eukaryotic zinc transporters and their regulation. BioMetals 14:251–270, gene fin maize. PLoS ONE 6: 28488–28502PubMedCrossRefGoogle Scholar
  18. Grotz N, Fox T, Connolly E, Park W, Guerinot ML, Eide D (1998) Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc Natl Acad Sci USA 95:7220–7224PubMedCentralPubMedCrossRefGoogle Scholar
  19. Guerinot ML (2000) The ZIP family of metal transporters. Biochim Biophys Acta 1465:190–198PubMedCrossRefGoogle Scholar
  20. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acid Symp Series 45:95–98Google Scholar
  21. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database:1999. Nucleic Acid Res 27:297–300PubMedCentralPubMedCrossRefGoogle Scholar
  22. Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2006) Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. Plant J 45:335–346PubMedCrossRefGoogle Scholar
  23. Ishimaru Y, Masuda H, Suzuki M, Bashir K, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2007) Over-expression of the OsZIP4 zinc transporter confers disarrangement of zinc distribution in rice plants. J Exp Bot 58:2909–2915PubMedCrossRefGoogle Scholar
  24. Ishimaru Y, Bashir K, Nishizawa N (2011) Zn uptake and translocation in rice plants. Rice 4:21–27CrossRefGoogle Scholar
  25. Jain M, Kaur N, Tyagi AK, Khurana JP (2006) The auxin-responsive GH3 gene family in rice (Oryza sativa). Funct Integr Genom 6:36–46CrossRefGoogle Scholar
  26. Jami SK, Clark GB, Ayele BT, Roux SJ, Kirti PB (2011) Identification and characterization of annexin gene family in rice. Plant Cell Report. doi: 10.1007/s00299-011-1201-0 Google Scholar
  27. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132PubMedCrossRefGoogle Scholar
  28. Lan HX, Wang ZF, Wang QH, Wang MM, Bao YM, Huang J, Zhang HS (2013) Characterization of a vacuolar zinc transporter OZT1 in rice (Oryza sativa L.). Mol Biol Rep 40:1201–1210PubMedCrossRefGoogle Scholar
  29. Lee S, Jeong H, Kim S, Lee J, Guerinot M, An G (2010a) OsZIP5 is a plasma membrane zinc transporter in rice. Plant Mol Biol 73:507–517PubMedCrossRefGoogle Scholar
  30. Lee S, Kim S, Lee J, Guerinot M, An G (2010b) Zinc deficiency inducible OsZIP8 encodes a plasma membrane-localized zinc transporter in rice. Mol Cells 29:551–558PubMedCrossRefGoogle Scholar
  31. Liu Y, Wang L, Zhang D, Li D (2013a) (2013a) Expression analysis of segmentally duplicated ZmMPK3-1 and ZmMPK3-2 genes in maize. Plant Mol Biol Rep 31:457–463CrossRefGoogle Scholar
  32. Liu Y, Zhang D, Li W, Li D (2013b) Genome-wide analysis of mitogen-activated protein kinase gene family in maize. Plant Mol Biol Rep DOI. doi: 10.1007/s11105-013-0623-y Google Scholar
  33. Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155PubMedCrossRefGoogle Scholar
  34. Maher C, Stein L, Ware D (2006) Evolution of Arabidopsis microRNA families through duplication events. Genome Res 16:510–519. doi: 10.1101/gr.4680506 PubMedCentralPubMedCrossRefGoogle Scholar
  35. Mizuno T, Usui K, Horie K, Nosaka S, Mizuno N, Obata H (2005) Cloning of three ZIP/NRAMP transporter genes from a Ni hyperaccumulator plant Thlaspi japonicum and their Ni2+ transport abilities. Plant Physiol Biochem 43:793–801PubMedCrossRefGoogle Scholar
  36. Moreau S, Thomson RM, Kaiser BN, Trevaskis B, Guerinot ML, Udvardi MK, Puppo A, Day DA (2002) GmZIP1 encodes a symbiosis-specific zinc transporter in soybean. J Biol Chem 277:4738–4746PubMedCrossRefGoogle Scholar
  37. Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140:411–432PubMedCentralPubMedCrossRefGoogle Scholar
  38. Narayanan NN, Vasconcelos MW, Grusak MA (2007) Expression profiling of Oryza sativa metal homeostasis genes indifferent rice cultivars using a cDNA macro array. Plant Physiol Biochem 45:277–286PubMedCrossRefGoogle Scholar
  39. Nozoye T, Nakanishi H, Nishizawa NK (2013) Characterizing the crucial components of iron homeostasis in the maize mutants ys1 and ys3. PLoS ONE 8(5):e62567. doi: 10.1371/journal.pone.0062567 PubMedCentralPubMedCrossRefGoogle Scholar
  40. Paulsen IT, Saier MH (1997) A novel family of ubiquitous heavy metal ion transport proteins. J Membr Biol 156:99–103PubMedCrossRefGoogle Scholar
  41. Pence NS, Larsen PB, Ebbs S, Letham DLD, Lasat MM, Garvin DF, Kochian LV (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyper accumulator Thlaspi caerulescens. Proc Natl Acad Sci USA 97:4596–4960CrossRefGoogle Scholar
  42. Plaza S, Tearall KL, Zhao FJ, Buchner P, McGrath SP, Hawkesford MJ (2007) Expression and functional analysis of metal transporter genes in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J Exp Bot 58:1717–1728PubMedCrossRefGoogle Scholar
  43. Prasanna BM, Mazumdar S, Tyagi P, Chakraborti M, Hossain F, Manjaiah KM, Gupta HS, Aggarwal PK, Guleria SK, Plaha P, Pixley K (2008) Genetic variability for kernel iron and zinc densities in selected harvest plus and Indian maize genotypes. Proc. in Maize for Asia: Emerging Trend and Technologies, Makassar, Indonasia, Oct. 20–23Google Scholar
  44. Raes J, Vandepoele K, Simillion C, Saeys Y, Van de Peer Y (2003) Investigating ancient duplication events in the Arabidopsis genome. J Struct Funct 3:117–129CrossRefGoogle Scholar
  45. Ramesh SA, Shin R, Eide DJ, Schachtman DP (2003) Defferential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiology 133:126–134PubMedCentralPubMedCrossRefGoogle Scholar
  46. Ricachenevsky FK, Sperotto RA, Menguer PK, Sperb ER, Lopes KL, Fett JP (2011) ZINC-INDUCED FACILITATOR-LIKE family in plants: lineage-specific expansion in monocotyledons and conserved genomic and expression features among rice (Oryza sativa) paralogs. BMC Plant Biol 11:20–36PubMedCentralPubMedCrossRefGoogle Scholar
  47. Saitou N, Nei M (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  48. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108PubMedCrossRefGoogle Scholar
  49. Seebauer JR, Moose SP, Fabbri BJ, Crossland LD, Below FE (2004) Amino acid metabolism in maize earshoots. Implications for assimilate preconditioning and nitrogen signaling. Plant Physiol 136:4326–4334PubMedCentralPubMedCrossRefGoogle Scholar
  50. Sharma A, Chauhan RS (2008) Identification of candidate gene-based markers (SNPs and SSRs) in the zinc and iron transport sequence of maize (Zea mays L.). Current Sci 95:1051–1059Google Scholar
  51. Simillion C, Vandepoele K, Van Montagu MC, Zabeau M, Van de Peer Y (2002) The hidden duplication past of Arabidopsis thaliana. Proc Natl Acad Sci USA 99:13627–13632PubMedCentralPubMedCrossRefGoogle Scholar
  52. Sperotto RA, Ricachenevsky FK, Duarte GL, Boff T, Lopes KL, Sperb ER, Grusak MA, Fett JP (2009) Identification of up-regulated genes in flag leaves during rice grain filling and characterization of OsNAC5, a new ABA-dependent transcription factor. Planta 230:985–1002PubMedCrossRefGoogle Scholar
  53. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentralPubMedCrossRefGoogle Scholar
  54. Tang H, Bowers JE, Wang X, Ming R, Alam M, Paterson AH (2008) Synteny and collinearity in plant genomes. Science 320:486–488PubMedCrossRefGoogle Scholar
  55. Terol J, Domingo C, Talon M (2006) The GH3 family in plants: genome wide analysis in rice and evolutionary history based on EST analysis. Gene 371:279–290PubMedCrossRefGoogle Scholar
  56. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCentralPubMedCrossRefGoogle Scholar
  57. Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301PubMedCrossRefGoogle Scholar
  58. Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 1993(73):79–118Google Scholar
  59. van der Heijden RTJM, Snel B, van Noort V, Huynen MA (2007) Orthology prediction at scalable resolution by phylogenetic tree analysis. BMC Bioinforma 8: doi: 10.1186/1471-2105-8-83
  60. van der Zaal BJ, Neuteboom LW, Pinas JE, Chardonnens AN, Schat H, Verkleij JA, Hooykaas PJ (1999) Overexpression of anovel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol 119:1047–1055PubMedCentralPubMedCrossRefGoogle Scholar
  61. Vision TJ, Brown DG, Tanksley SD (2000) The origins of genomic duplications in Arabidopsis. Science 290:2114–2117PubMedCrossRefGoogle Scholar
  62. Waters BM, Uauy C, Dubcovsky J, Grusak MA (2009) Wheat (Triticum aestivum) NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain. J Exp Bot 60:4263–4274PubMedCrossRefGoogle Scholar
  63. Wu YH, Frey AG, Eide DJ (2011) Transcriptional regulation of the Zrg17 zinc transporter of the yeast secretary pathway. Biochem J 435:259–266PubMedCrossRefGoogle Scholar
  64. Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10:88–94PubMedCrossRefGoogle Scholar
  65. Zaun HC, Shrier A, Orlowski J (2012) N-myristoylation and Ca2+ binding of calcineurin B homologous protein CHP3 are required to enhance Na+/H+ exchanger NHE1 half-life and activity at the plasma membrane. J Biol Chem 287:36883–36895PubMedCentralPubMedCrossRefGoogle Scholar
  66. Zhang X, Tang B, Yu F, Li L, Wang M, Xue Y, Zhang Z, Yan J, Yue B, Zheng Y, Qiu F (2013) Identification of major QTL for waterlogging tolerance using genome-wide association and linkage mapping of maize seedlings. Plant Mol Biol Rep 31:594–606CrossRefGoogle Scholar
  67. Zhao H, Eide D (1996) The yeast ZRT1 gene encodes the zinc transporter protein of a high-affinity uptake system induced by zinc limitation. Proc Natl Acad Sci USA 93:2454–2458PubMedCentralPubMedCrossRefGoogle Scholar
  68. Zhao Y, Zhou Y, Jiang H, Li X, Gan D, Peng X, Zhu S, Cheng B (2011) Systematic analysis of sequences and expression patterns of drought-responsive members of the HD-Zip Gene Family in Maize. Plos ONE 6:e28488–28500PubMedCentralPubMedCrossRefGoogle Scholar
  69. Zhou LM, Zhang Q, Zhou M, Qi LP, Yang XB, Zhang KX, Pang JF, Zhu XM (2012) Aldehyde dehydrogenase protein superfamily in maize. Funct Integr Genomics 12:683–691PubMedCrossRefGoogle Scholar
  70. Zhuang J, Peng RH, Cheng ZM, Zhang J, Cai B, Zhang Z, Gao F, Zhu B, Fu XY, Jin XF, Chen JM, Qiao YS, Xiong AS, Yao QH (2009) Genome-wide analysis of the putative AP2/ERF family genes in Vitis vinifera. Sci Hortic 123:73–81. doi: 10.1016/j.scienta.2009.08.002 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Tapan Kumar Mondal
    • 1
    Email author
  • Showkat Ahmad Ganie
    • 1
  • Mukesh Kumar Rana
    • 1
  • Tilak Raj Sharma
    • 2
  1. 1.Division of Genomic ResourceNational Bureau of Plant Genetic Resource, IARINew DelhiIndia
  2. 2.National Research Centre on Plant Biotechnology, IARINew DelhiIndia

Personalised recommendations