Advertisement

Plant Molecular Biology Reporter

, Volume 32, Issue 1, pp 198–208 | Cite as

Group 6 Late Embryogenesis Abundant (LEA) Proteins in Monocotyledonous Plants: Genomic Organization and Transcript Accumulation Patterns in Response to Stress in Oryza sativa

  • Rocío Rodríguez-Valentín
  • Francisco Campos
  • Marina Battaglia
  • Rosa M. Solórzano
  • Miguel A. Rosales
  • Alejandra A. CovarrubiasEmail author
Original Paper

Abstract

In this study, group 6 Late Embryogenesis Abundant (LEA) proteins from monocot plants were identified along with a set of unique motifs that distinguished them from eudicot LEA6 proteins. Moreover, a LEA6 gene and its corresponding protein from Oryza sativa (OsLEA6) were also investigated. We found that the rice genome contains only one gene of this family, described its genomic organization, and discarded the possibility suggested in different databases that this gene was fused with an HSP90 gene forming a chimeric OsHSP90–LEA6 protein. We also showed that OsLEA6 transcript accumulates in response to water deficit conditions and that, using specific anti-OsLEA6 antibodies, its corresponding protein follows a similar accumulation pattern. The analysis of the OsLEA6 gene promoter sequence is also included, in which different drought and ABA response cis elements were identified. Accordingly, the ABA responsiveness of OsLEA6 protein is also shown. Thus, as previously shown for other LEA6 members present in eudicots, rice and other monocot LEA6 proteins are likely to participate in responses to stress conditions.

Keywords

LEA proteins Water deficit Abiotic stress ABA Rice Oryza sativa 

Notes

Acknowledgements

We are grateful to Dr. J.L. Reyes for critical and language review of this manuscript, to J. Mazari for technical support, to the Sequencing and Oligonucleotide Synthesis Facility of the Instituto de Biotecnología-UNAM for the synthesis of oligonucleotides and DNA sequences needed for this work, and to CONACyT-Mexico (132258-Q) and DGAPA-UNAM (IN208212) for providing funding for this work.

Supplementary material

11105_2013_641_Fig9_ESM.gif (401 kb)
Fig. S1

(JPEG 60 kb)

11105_2013_641_MOESM1_ESM.eps (2.8 mb)
High Resolution Image (EPS 2823 kb)
11105_2013_641_Fig10_ESM.jpg (60 kb)
Fig. S2

(JPEG 90 kb)

11105_2013_641_MOESM2_ESM.tif (306 kb)
High Resolution Image (TIFF 306 kb)
11105_2013_641_Fig11_ESM.jpg (91 kb)
Fig. S3

(GIF 401 kb)

11105_2013_641_MOESM3_ESM.tif (178 kb)
High Resolution Image (TIFF 178 kb)
11105_2013_641_MOESM4_ESM.pdf (60 kb)
Fig. S4 (PDF 60 kb)
11105_2013_641_MOESM5_ESM.pdf (65 kb)
Table S1 (PDF 65 kb)

References

  1. Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148:6–24PubMedCentralPubMedCrossRefGoogle Scholar
  2. Bies-Ethève N, Gaubier-Comella P, Debures A, Lasserre E, Jobet E, Raynal M, Cooke R, Delseny M (2008) Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in Arabidopsis thaliana. Plant Mol Biol 67:107–124PubMedCrossRefGoogle Scholar
  3. Brown T, Mackey K, Du T (2004) Analysis of RNA by Northern and slot blot hybridization. Curr Protoc Mol Biol 67:4.9.1–4.9.19Google Scholar
  4. Colmenero-Flores JM, Campos F, Garciarrubio A, Covarrubias AA (1997) Characterization of Phaseolus vulgaris cDNA clones responsive to water deficit: identification of a novel late embryogenesis abundant-like protein. Plant Mol Biol 35:393–405PubMedCrossRefGoogle Scholar
  5. Colmenero-Flores JM, Moreno LP, Smith C, Covarrubias AA (1999) PvLEA-18, a member of a new late-embryogenesis-abundant protein family that accumulates during water stress and in the growing regions of well-irrigated bean seedlings. Plant Physiol 120:93–103PubMedCentralPubMedCrossRefGoogle Scholar
  6. Dure L (1993) Structural motifs in LEA proteins. In: Close TJ, Bray EA (eds) Plant responses to cellular dehydration during environmental stress. The American Society of Plant Physiologists, Rockville, pp 91–103Google Scholar
  7. Dure L, Greenway SC, Galau GA (1981) Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry 20:4162–4168PubMedCrossRefGoogle Scholar
  8. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797PubMedCentralPubMedCrossRefGoogle Scholar
  9. Garay-Arroyo A, Colmenero-Flores JM, Garciarrubio A, Covarrubias AA (2000) Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J Biol Chem 275:5668–5674PubMedCrossRefGoogle Scholar
  10. Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, Paern J, Lopez R (2010) A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res 38(Suppl):W695–W699PubMedCentralPubMedCrossRefGoogle Scholar
  11. Hand SC, Menze MA, Toner M, Boswell, Moore D (2011) LEA proteins during water stress not just for plants anymore. Annu Rev Physiol 73:115–134PubMedCrossRefGoogle Scholar
  12. Harper S, Speicher DW (2011) Purification of proteins fused to glutathione S-transferase. In: Protein Chromatography. Methods Mol Biol 681:259–280PubMedCentralPubMedCrossRefGoogle Scholar
  13. Hundertmark M, Hincha DK (2008) LEA (Late Embryogenesis Abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9:118–139PubMedCentralPubMedCrossRefGoogle Scholar
  14. Hurkman WJ, Tanaka CK (1986) Solubilization of plant membraneproteins for analysis by two-dimensional gel electrophoresis.Plant Physiol 81:802–806Google Scholar
  15. Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Biol 47:377–403Google Scholar
  16. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132PubMedCrossRefGoogle Scholar
  17. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) ClustalW and ClustalX version 2. Bioinformatics 23:2947–2948PubMedCrossRefGoogle Scholar
  18. Li X, Romero P, Rani M, Dunker AK, Obradovic Z (1999) Predicting protein disorder for N-, C-, and internal regions. Genome Inform 10:30–40Google Scholar
  19. Moreno-Fonseca LP, Covarrubias AA (2001) Downstream DNA sequences are required to modulate Pvlea-18 gene expression in response to dehydration. Plant Mol Biol 45:501–515PubMedCrossRefGoogle Scholar
  20. Reyes JL, Rodrigo MJ, Colmenero-Flores JM, Gil JV, Garay-Arroyo A, Campos F, Salamini F, Bartels D, Covarrubias AA (2005) Hydrophilins from distant organisms can protect enzymatic activities from water limitation effects in vitro. Plant Cell Environ 28:709–718CrossRefGoogle Scholar
  21. Romero P, Obradovic Z, Dunker AK (1997) Sequence data analysis for long disordered regions prediction in the calcineurin family. Genome Inform 8:110–124Google Scholar
  22. Romero P, Obradovic Z, Li X, Garner E, Brown C, Dunker AK (2001) Sequence complexity of disordered proteins. Proteins: Struct Funct Gen 42:38–48CrossRefGoogle Scholar
  23. Schägger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379PubMedCrossRefGoogle Scholar
  24. Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227PubMedCrossRefGoogle Scholar
  25. Sun X, Rikkerink EHA, Jones WT, Uversky VN (2013) Multifarious roles of intrinsic disorder in proteins illustrate broad impact on plant biology. Plant Cell 25:38–55PubMedCentralPubMedCrossRefGoogle Scholar
  26. Taiz L, Zeiger E (1991) Water balance of the plant, In: Plant Physiology. Benjamin/Cummings, San Francisco, pp 81–99Google Scholar
  27. Tompa P, Kovacs D (2010) Intrinsically disordered chaperones in plants and animals. Biochem Cell Biol 88:167–174PubMedCrossRefGoogle Scholar
  28. Vicient CM, Delseny M (1999) Isolation of total RNA from Arabidopsis thaliana seeds. Anal Biochem 268:412–413PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Rocío Rodríguez-Valentín
    • 1
    • 2
  • Francisco Campos
    • 1
  • Marina Battaglia
    • 1
  • Rosa M. Solórzano
    • 1
  • Miguel A. Rosales
    • 1
    • 3
  • Alejandra A. Covarrubias
    • 1
    Email author
  1. 1.Departamento de Biología Molecular de Plantas, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
  2. 2.Instituto Nacional de Salud Pública (INSP)CuernavacaMexico
  3. 3.Instituto de Recursos Naturales y Agrobiología de SevillaConsejo Superior de Investigaciones CientíficasSevillaSpain

Personalised recommendations