Plant Molecular Biology Reporter

, Volume 31, Issue 3, pp 678–687 | Cite as

An AFLP, SRAP, and SSR Genetic Linkage Map and Identification of QTLs for Fruit Traits in Pear (Pyrus L.)

  • Rui-ping Zhang
  • Jun Wu
  • Xiu-gen Li
  • M. Awais Khan
  • Hui Chen
  • Schuyler S. Korban
  • Shao-ling Zhang
Original Paper


In this study, a population of 97 F1 seedlings from a cross between the interspecific hybrid (European × Chinese species) pear ‘Bayuehong’ (BYH) and the Chinese pear ‘Dangshansuli’ (DS) was used for establishing linkage maps and for quantitative trait loci (QTL) discovery. Using amplified length polymorphism (AFLP), simple sequence repeat (SSR), and sequence-related amplified polymorphism (SRAP) markers, along with the S locus for self-incompatibility, two parental linkage maps were constructed. The map of BYH consisted of 214 markers (143 AFLPs, 64 SRAPs, 6 SSRs, and S) mapped on all 17 linkage groups of the pear genome with a total length of 1,352.7 cM. The map of DS was comprised of 122 markers (83 AFLPs, 37 SRAPs, 1 SSR, and S) distributed along all 17 linkage groups and covering 1,044.3 cM. Based on phenotypic data from two successive years (2007 and 2008) for six fruit traits, including fruit weight (in grams), fruit diameter (in centimeters), fruit length (in centimeters), soluble solids content, fruit shape index, and maturity date, 19 QTLs were detected. These QTLs were mapped on LG 01, LG 02, LG 05, LG 07, LG 08, LG 10 of the BYH map and LG 02, LG 06, LG 15 of the DS map and accounting for 7.1 to 22.0 % of the observed phenotypic variance. Four QTLs, Pfi-8-1 for fruit shape index, Pfm-8-1 for fruit maturity date, Pfw-7-1 and Pfw-8-1 for fruit weight (in grams), with LOD scores ≥3.5, were deemed as major genes. QTLs Pfi-8-1, Pfm-8-1, and Pfw-8-1 were co-localized on LG 08 of the BYH map, along with Pfl-8-1 for fruit length. It was observed that on LG 07 of the BYH map, QTLs for fruit length, fruit shape index, and fruit weight were clustered. When QTL locations from both years were compared, Pfl-7-1 and Pfl-7-2 for fruit length, Pfi-2-1 and Pfi-2-2 for fruit shape index, and Pfm-8-1 and Pfm-8-2 for fruit maturity date were stably mapped onto the same linkage groups, respectively. Moreover, Pfm-8-1 and Pfm-8-2 were also located within the same region of LG 08 of the BYH map.


Pear Molecular markers Linkage map Fruit traits QTL 



This work was supported by the National Natural Science Foundation of China (31171928, 31230063), the Fundamental Research Funds for the Central Universities (KYZ201146), and the Earmarked Fund for China Agriculture Research System (CARS-29).

Supplementary material

11105_2012_544_MOESM1_ESM.doc (32 kb)
Supplementary Table 1 Data on fruit traits collected from an F1 population of ‘Bayuehong’ × ‘Dangshansuli’ in two successive years (2007 and 2008). (DOC 32 kb)
11105_2012_544_MOESM2_ESM.doc (55 kb)
Supplementary Table 2 Pearson correlation between phenotypic fruit quality traits of ‘Bayuehong’ × ‘Dangshansuli’ F1 population collected over 2 years (2007 and 2008). (DOC 55 kb)


  1. Abler B, Edwards M, Stuber C (1991) Isoenzymatic identification of quantitative trait loci in crosses of elite maize inbreds. Crop Sci 31:267–274CrossRefGoogle Scholar
  2. Blas AL, Yu Q, Veatch OJ, Paull RE, Moore PH, Ming R (2011) Genetic mapping of quantitative trait loci controlling fruit size and shape in papaya. Mol Breed 29:457–466CrossRefGoogle Scholar
  3. Campoy JA, Ruiz D, Egea J, Rees DJG, Celton JM, Martínez-Gómez P (2010) Inheritance of flowering time in apricot (Prunus armeniaca L.) and analysis of linked quantitative trait loci (QTLs) using simple sequence repeat (SSR) markers. Plant Mol Biol Rep 29:404–410CrossRefGoogle Scholar
  4. Causse M, Duffe P, Gomez MC, Buret M, Damidaux R, Zamir D, Gur A, Chevalier C, Lemaire-Chamley M, Rothan C (2004) A genetic map of candidate genes and QTLs involved in tomato fruit size and composition. J Exp Bot 55:1671–1685PubMedCrossRefGoogle Scholar
  5. Chagne D, Krieger C, Rassam M, Sullivan M, Fraser J, Andre C, Pindo M, Troggio M, Gardiner SE, Henry RA, Allan AC, McGhie TK, Laing WA (2012) QTL and candidate gene mapping for polyphenolic composition in apple fruit. BMC Plant Biol 12:12PubMedCrossRefGoogle Scholar
  6. Chaim AB, Paran I, Grube R, Jahn M, Van Wijk R, Peleman J (2001) QTL mapping of fruit-related traits in pepper (Capsicum annuum). Theor Appl Genet 102:1016–1028CrossRefGoogle Scholar
  7. Chevreau E, Leuliette S, Gallet M (1997) Inheritance and linkage of isozyme loci in pear (Pyrus communis L.). Theor Appl Genet 94:498–506CrossRefGoogle Scholar
  8. Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A, Plomion C, Monet R (1999) Mapping QTLs controlling fruit quality in peach (Prunus persica (L.) Batsch). Theor Appl Genet 98:18–31CrossRefGoogle Scholar
  9. Dondini L, Pierantoni L, Gaiotti F, Chiodini R, Tartarini S, Bazzi C, Sansavini S (2005) Identifying QTLs for fire-blight resistance via a European pear (Pyrus communis L.) genetic linkage map. Mol Breed 14:407–418CrossRefGoogle Scholar
  10. Dunemann F, Ulrich D, Boudichevskaia A, Grafe C, Weber WE (2009) QTL mapping of aroma compounds analysed by headspace solid-phase microextraction gas chromatography in the apple progeny ‘Discovery’ × ‘Prima’. Mol Breed 23:501–521CrossRefGoogle Scholar
  11. Eduardo I, Pacheco I, Chietera G, Bassi D, Pozzi C, Vecchietti A, Rossini L (2010) QTL analysis of fruit quality traits in two peach intraspecific populations and importance of maturity date pleiotropic effect. Tree Genet Genomes 7:323–335CrossRefGoogle Scholar
  12. Eduardo I, Pacheco I, Chietera G, Bassi D, Pozzi C, Vecchietti A, Rossini L (2011) QTL analysis of fruit quality traits in two peach intraspecific populations and importance of maturity date pleiotropic effect. Tree Genet Genomes 7:323–335CrossRefGoogle Scholar
  13. Etienne C, Rothan C, Moing A, Plomion C, Bodenes C, Svanella-Dumas L, Cosson P, Pronier V, Monet R, Dirlewanger E (2002) Candidate genes and QTLs for sugar and organic acid content in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 105:145–159PubMedCrossRefGoogle Scholar
  14. Iketani H, Abe K, Yamamoto T, Kotobuki K, Sato Y, Saito T, Terai O, Matsuta N, Hayashi T (2001) Mapping of disease-related genes in Japanese pear using a molecular linkage map with RAPD markers. Breed Sci 51:179–184CrossRefGoogle Scholar
  15. Illa E, Eduardo I, Audergon JM, Barale F, Dirlewanger E, Li X, Moing A, Lambert P, Dantec L, Gao Z, Poëssel J-L, Pozzi C, Rossini L, Vecchietti A, Arús P, Howad W (2010) Saturating the Prunus (stone fruits) genome with candidate genes for fruit quality. Mol Breed 28:667–682CrossRefGoogle Scholar
  16. Ishimizu T, Inoue K, Shimonaka M, Saito T, Terai O, Norioka S (1999) PCR-based method for identifying the S-genotypes of Japanese pear cultivars. Theor Appl Genet 98:961–967CrossRefGoogle Scholar
  17. Kenis K, Keulemans J (2005) Genetic linkage maps of two apple cultivars (Malus × domestica Borkh.) based on AFLP and microsatellite markers. Mol Breed 15:205–219CrossRefGoogle Scholar
  18. Kenis K, Keulemans J (2007) Study of tree architecture of apple (Malus × domestica Borkh.) by QTL analysis of growth traits. Mol Breed 19:193–208CrossRefGoogle Scholar
  19. Kenis K, Keulemans J, Davey MW (2008) Identification and stability of QTLs for fruit quality traits in apple. Tree Genet Genomes 4:647–661CrossRefGoogle Scholar
  20. Kianian S, Quiros C (1992) Generation of a Brassica oleracea composite RFLP map: linkage arrangements among various populations and evolutionary implications. Theor Appl Genet 84:544–554CrossRefGoogle Scholar
  21. King G, Maliepaard C, Lynn J, Alston F, Durel C, Evans K, Griffon B, Laurens F, Manganaris A, Schrevens E (2000) Quantitative genetic analysis and comparison of physical and sensory descriptors relating to fruit flesh firmness in apple (Malus pumila Mill.). Theor Appl Genet 100:1074–1084CrossRefGoogle Scholar
  22. Ky CL, Barre P, Lorieux M, Trouslot P, Akaffou S, Louarn J, Charrier A, Hamon S, Noirot M (2000) Interspecific genetic linkage map, segregation distortion and genetic conversion in coffee (Coffea sp.). Theor Appl Genet 101:669–676CrossRefGoogle Scholar
  23. Lecomte L, Duffe P, Buret M, Servin B, Hospital F, Causse M (2004) Marker-assisted introgression of five QTLs controlling fruit quality traits into three tomato lines revealed interactions between QTLs and genetic backgrounds. Theor Appl Genet 109:658–668PubMedCrossRefGoogle Scholar
  24. Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461CrossRefGoogle Scholar
  25. Li G, Gao M, Yang B, Quiros C (2003) Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping. Theor Appl Genet 107:168–180PubMedCrossRefGoogle Scholar
  26. Liebhard R, Kellerhals M, Pfammatter W, Jertmini M, Gessler C (2003a) Mapping quantitative physiological traits in apple (Malus × domestica Borkh.). Plant Mol Biol 52:511–526PubMedCrossRefGoogle Scholar
  27. Liebhard R, Koller B, Gianfranceschi L, Gessler C (2003b) Creating a saturated reference map for the apple (Malus × domestica Borkh.) genome. Theor Appl Genet 106:1497–1508PubMedGoogle Scholar
  28. Luo L, Zhang Y, Xu S (2004) A quantitative genetics model for viability selection. Heredity 94:347–355CrossRefGoogle Scholar
  29. Maliepaard C, Alston F, Van Arkel G, Brown L, Chevreau E, Dunemann F, Evans K, Gardiner S, Guilford P, Van Heusden A (1998) Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor Appl Genet 97:60–73CrossRefGoogle Scholar
  30. Martínez-García PJ, Parfitt DE, Ogundiwin EA, Fass J, Chan HM, Ahmad R, Lurie S, Dandekar A, Gradziel TM, Crisosto CH (2012) High density SNP mapping and QTL analysis for fruit quality characteristics in peach (Prunus persica L). Tree Genet Genomes. doi: 10.1007/s11295-012-0522-7
  31. Murray M, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucl Acids Res 8:4321–4326PubMedCrossRefGoogle Scholar
  32. Nikaido A, Yoshimaru H, Tsumura Y, Suyama Y, Murai M, Nagasaka K (1999) Segregation distortion for AFLP markers in Cryptomeria japonica. Genes Genet Syst 74:55–59CrossRefGoogle Scholar
  33. Osborn T, Alexander D, Fobes J (1987) Identification of restriction fragment length polymorphisms linked to genes controlling soluble solids content in tomato fruit. Theor Appl Genet 73:350–356CrossRefGoogle Scholar
  34. Paterson A, Damon S, Hewitt J, Zamir D, Rabinowitch H, Lincoln S, Lander E, Tanksley S (1991) Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics 127:181–197PubMedGoogle Scholar
  35. Perfectti F, Pascual L (1996) Segregation distortion of isozyme loci in cherimoya (Annona cherimola Mill). Theor Appl Genet 93:440–446CrossRefGoogle Scholar
  36. Pierantoni L, Cho KH, Shin IS, Chiodini R, Tartarini S, Dondini L, Kang SJ, Sansavini S (2004) Characterisation and transferability of apple SSRs to two European pear F1 populations. Theor Appl Genet 109:1519–1524PubMedCrossRefGoogle Scholar
  37. Pierantoni L, Dondini L, Cho KH, Shin IS, Gennari F, Chiodini R, Tartarini S, Kang SJ, Sansavini S (2006) Pear scab resistance QTLs via a European pear (Pyrus communis) linkage map. Tree Genet Genomes 3:311–317CrossRefGoogle Scholar
  38. Quilot B, Wu B, Kervella J, Genard M, Foulongne M, Moreau K (2004) QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P. davidiana. Theor Appl Genet 109:884–897PubMedCrossRefGoogle Scholar
  39. Quilot B, Kervella J, Genard M, Lescourret F (2005) Analysing the genetic control of peach fruit quality through an ecophysiological model combined with a QTL approach. J Exp Bot 56:3083–3092PubMedCrossRefGoogle Scholar
  40. Sánchez-Pérez R, Howad W, Dicenta F, Arús P, Martínez-Gómez P (2007) Mapping major genes and quantitative trait loci controlling agronomic traits in almond. Plant Breeding 126:310–318CrossRefGoogle Scholar
  41. Sawamura Y, Saito T, Takada N, Yamamoto T, Kimura T, Hayashi T, Kotobuki K (2004) Identification of parentage of Japanese pear ‘Housui’. J Jap Soc Hort Sci 73:511–518CrossRefGoogle Scholar
  42. Socquet-Juglard D, Christen D, Devènes G, Gessler C, Duffy B, Patocchi A (2012) Mapping architectural, phenological, and fruit quality QTLs in apricot. Plant Mol Biol Rep. doi: 10.1007/s11105-012-0511-x
  43. Sun Z, Wang Z, Tu J, Zhang J, Yu F, McVetty PBE, Li G (2007) An ultradense genetic recombination map for Brassica napus, consisting of 13551 SRAP markers. Theor Appl Genet 114:1305–1317PubMedCrossRefGoogle Scholar
  44. Sun W, Zhang Y, Le W, He Z (2009) Construction of a genetic linkage map and QTL analysis for some leaf traits in pear (Pyrus L.). Front Agric China 3:67–74CrossRefGoogle Scholar
  45. Taylor DR, Ingvarsson PK (2003) Common features of segregation distortion in plants and animals. Genetica 117:27–35PubMedCrossRefGoogle Scholar
  46. Tisné S, Reymond M, Vile D, Fabre J, Dauzat M, Koornneef M, Granier C (2008) Combined genetic and modeling approaches reveal that epidermal cell area and number in leaves are controlled by leaf and plant developmental processes in Arabidopsis. Plant Physiol 148:1117–1127PubMedCrossRefGoogle Scholar
  47. Tuberosa R, Salvi S, Sanguineti MC, Landi P, Maccaferri M, Conti S (2002) Mapping QTLs regulating morpho-physiological traits and yield: case studies, shortcomings and perspectives in drought-stressed maize. Ann Bot 89:941–963PubMedCrossRefGoogle Scholar
  48. Van Oijen J, Voorrips R (2001) Joinmap Version 3.0, software for the calculation of genetic linkage maps. Plant Research International, WageningenGoogle Scholar
  49. Van Ooijen J (2004) MapQTL® 5. Software for the mapping of quantitative trait loci in experimental populations. Kyazma BV, WageningenGoogle Scholar
  50. Voorrips R (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78PubMedCrossRefGoogle Scholar
  51. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucl Ac Res 23:4407–4414Google Scholar
  52. Wang D, Karle R, Iezzoni A (2000) QTL analysis of flower and fruit traits in sour cherry. Theor Appl Genet 100:535–544CrossRefGoogle Scholar
  53. Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, Khan MA, Tao S, Korban SS, Wang H, Chen NJ, Nishio T, Xu X, Cong L, Qi K, Huang X, Wang Y, Zhao X, Wu J, Deng C, Gou C, Zhou W, Yin H, Qin G, Sha Y, Tao Y, Chen H, Yang Y, Song Y, Zhan D, Wang J, Li L, Dai M, Gu C, Wang Y, Shi D, Wang X, Zhang H, Zeng L, Zheng D, Wang C, Chen M, Wang G, Xie L, Sovero V, Sha S, Huang W, Zhang S, Zhang M, Sun J, Xu L, Li Y, Liu X, Li Q, Shen J, Wang J, Paull RE, Bennetzen JL, Wang J, Zhang S (2012) The genome of pear (Pyrus bretschneideri Rehd.). Genome Res. doi: 10.1101/gr.144311.112
  54. Xiao J, Li J, Yuan L, Tanksley S (1996) Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. Theor Appl Genet 92:230–244CrossRefGoogle Scholar
  55. Yamamoto T, Kimura T, Sawamura Y, Manabe T, Kotobuki K, Hayashi T, Ban Y, Matsuta N (2002a) Simple sequence repeats for genetic analysis in pear. Euphytica 124:129–137CrossRefGoogle Scholar
  56. Yamamoto T, Kimura T, Shoda M, Ban Y, Hayashi T, Matsuta N (2002b) Development of microsatellite markers in the Japanese pear (Pyrus pyrifolia Nakai). Mol Ecol Notes 2:14–16CrossRefGoogle Scholar
  57. Yamamoto T, Kimura T, Shoda M, Imai T, Saito T, Sawamura Y, Kotobuki K, Hayashi T, Matsuta N (2002c) Genetic linkage maps constructed by using an interspecific cross between Japanese and European pears. Theor Appl Genet 106:9–18PubMedGoogle Scholar
  58. Yamamoto T, Kimura T, Terakami S, Nishitani C, Sawamura Y, Saito T, Kotobuki K, Hayashi T (2007) Integrated reference genetic linkage maps of pear based on SSR and AFLP markers. Breed Sci 57:321–329CrossRefGoogle Scholar
  59. Zhang G, Sebolt AM, Sooriyapathirana SS, Wang D, Bink MCAM, Olmstead JW, Iezzoni AF (2009) Fruit size QTL analysis of an F1 population derived from a cross between a domesticated sweet cherry cultivar and a wild forest sweet cherry. Tree Genet Genomes 6:25–36CrossRefGoogle Scholar
  60. Zorrilla-Fontanesi Y, Cabeza A, Dominguez P, Medina JJ, Valpuesta V, Denoyes-Rothan B, Sanchez-Sevilla JF, Amaya I (2011) Quantitative trait loci and underlying candidate genes controlling agronomical and fruit quality traits in octoploid strawberry (Fragaria × ananassa). Theor Appl Genet 123:755–778PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Rui-ping Zhang
    • 1
  • Jun Wu
    • 1
  • Xiu-gen Li
    • 2
  • M. Awais Khan
    • 3
  • Hui Chen
    • 1
  • Schuyler S. Korban
    • 3
  • Shao-ling Zhang
    • 1
  1. 1.College of HorticultureNanjing Agricultural UniversityNanjingChina
  2. 2.The National Institute of Fruit Tree ScienceZhengzhouChina
  3. 3.Department of Natural Resources and Environmental SciencesUniversity of IllinoisUrbanaUSA

Personalised recommendations