Plant Molecular Biology Reporter

, Volume 31, Issue 1, pp 98–108 | Cite as

BEAK LIKE SPIKELET1 is Required for Lateral Development of Lemma and Palea in Rice

  • Xiaoding Ma
  • Zhijun Cheng
  • Fuqing Wu
  • Mingna Jin
  • Liguo Zhang
  • Feng Zhou
  • Jiulin Wang
  • Kunneng Zhou
  • Jian Ma
  • Qibing Lin
  • Cailin Lei
  • Jianmin WanEmail author
Original Paper


Lemma and palea are unique floral structures found only in Poaceae, and are responsible for protecting the inner floral organs and kernels from environmental stresses. However, the mechanism underlying specification of their morphology remains unclear. In this study, we characterized a rice mutant, beak like spikelet1 (bls1), which specifically affects development of the lemma and palea. In bls1 mutant, floral-organ identity and floral-organ patterning are normal, and the defects occur at the stage of the lemma and palea expansion, whereas the other aspects of floral architecture and form are not affected. We isolated BLS1 by positional cloning and found that it encodes a protein with a conserved domain of unknown function. BLS1 is expressed strongly in young inflorescence, specifically the young lemmas and paleas of spikelets. Subcellular localization analysis showed that BLS1 is localized in the nucleus. Expression of the AP1-like and SEP-like floral homeotic genes were not changed in the bls1 mutant. Our study suggested that BLS1 is required for lateral development of the lemma and palea and does not function at stages of floral-organ initiation and patterning.


ALOG Floral-organ Cell expansion Oryza sativa



Scanning electron microscope












Quantitative reverse transcription polymerase chain reaction


Arabidopsis LSH1 and Oryza G1



We thank for Drs. Xianchun Xia (Institute of Crop Science, CAAS) and Zhigang Zhao (Nanjing Agricultural University) for their critical reading of the manuscript. This research was supported by grants from the Chinese ‘973’ Program (2010CB125904-4) and National Transform Science and Technology Program (2009ZX0809-104B)

Supplementary material

11105_2012_480_MOESM1_ESM.doc (123 kb)
Supplemental Fig. 1. Comparison of spikelet hull width and length in WT and bls1-1 just before heading (n =12 plants, 20 spikelets/plant). The spikelet hull width is reduced significantly compared with WT, while the spikelet hull length showed no difference. All data are given as mean ± SD, *P < 0.01 (DOC 123 kb)
11105_2012_480_MOESM2_ESM.doc (174 kb)
Supplemental Fig. 2. Identification of deletion site in bls1-2. Identification of deletion site in bls1-2 by PCR amplification with four primer pairs, M6, q8F-q8R, q14F-q14R, and M6F-q14R indicated in Fig. 4a. Note that primer pair q8F-8R can amplify from WT (a), and primer combination of M6F-q14R from bls1-2 shown by the arrow in (b) (DOC 174 kb)
11105_2012_480_MOESM3_ESM.doc (636 kb)
Supplemental Fig. 3. CDS and protein sequences of BLS1. Green lines and red box indicate the ALOG domain and nuclear localization signal, respectively (DOC 636 kb)
11105_2012_480_MOESM4_ESM.doc (64 kb)
Supplemental Table 1. Sequences of the primers used in this study(DOC 63 kb)


  1. Ambrose BA, Lerner DR, Ciceri P, Padilla CM, Yanofsky MF, Schmidt RJ (2000) Molecular and genetic analyses of the silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Mol Cell 5:569–579PubMedCrossRefGoogle Scholar
  2. Angenent GC, Franken J, Busscher M, van Dijken A, van Went JL, Dons HJM, van Tunen AJ (1995) A novel class of MADS box genes is involved in ovule development in petunia. Plant Cell 7:1569–1582PubMedGoogle Scholar
  3. Becker A, Theißen G (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol 9:464–489CrossRefGoogle Scholar
  4. Bowman JL, Smyth DR, Meyerowitz EM (1991) Genetic interactions among floral homeotic genes of Arabidopsis. Development 112:1–20PubMedGoogle Scholar
  5. Chen ZX, Wu JG, Ding WN, Chen HM, Wu P, Shi CH (2006) Morphogenesis and molecular basis on naked seed rice, a novel homeotic mutation of OsMADS1 regulating transcript level of AP3 homologue in rice. Planta 223:882–890PubMedCrossRefGoogle Scholar
  6. Cho E, Zambryshi PC (2010) ORGAN BOUNDARY1 defines a gene expressed at the junction between the shoot apical meristem and lateral organs. Proc Natl Acad Sci USA 108:2154–2159CrossRefGoogle Scholar
  7. Chung YY, Kim SR, Finkel D, Yanofsky MF, An G (1994) Early flowering and reduced apical dominance result from ectopic expression of a rice MADS box gene. Plant Mol Biol 26:657–665PubMedCrossRefGoogle Scholar
  8. Clark LG, Zhang W, Wendel JF (1995) A phylogeny of the grass family (Poaceae) based on ndhF sequence data. Syst Bot 20:436–460CrossRefGoogle Scholar
  9. Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37PubMedCrossRefGoogle Scholar
  10. Colombo L, Franken J, Koetje E, van Went J, Dons HJM, Angenent GC, van Tunen AJ (1995) The petunia MADS box gene FBP11 determines ovule identity. Plant Cell 7:1859–1868PubMedGoogle Scholar
  11. Cui RF, Han JK, Zhao SZ, Su KM, Wu F, Du XQ, Xu QJ, Chong K, Theißen G, Meng Z (2010) Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa). Plant J 6:767–781CrossRefGoogle Scholar
  12. Duan YL, Diao ZJ, Liu HQ, Cai MS, Wang F, Lan T, Wu WR (2010) Molecular cloning and functional characterization of OsJAG gene based on a complete-deletion mutant in rice (Oryza sativa L.). Plant Mol Biol 74:605–615PubMedCrossRefGoogle Scholar
  13. Ferrario S, Immink RGH, Angenent GC (2004) Conservation and diversity in flower land. Curr Opin Plant Biol 7:84–91PubMedCrossRefGoogle Scholar
  14. Fornara F, Parenicova L, Falasca G, Pelucchi N, Masiero S, Ciannamea S, Lopez-Dee Z, Altamura MM, Colombo L, Kater MM (2004) Functional characterization of OsMADS18, a member of the AP1/SQUA subfamily of MADS box genes. Plant Physiol 135:2207–2219PubMedCrossRefGoogle Scholar
  15. Gao XC, Liang WQ, Yin CS, Ji SM, Wang HM, Su X, Guo C, Kong HZ, Xue HW, Zhang DB (2010) The SEPALLATA-like gene OsMADS34 is required for rice inflorescence and spikelet development. Plant Physiol 153:728–740PubMedCrossRefGoogle Scholar
  16. Goto K, Meyerowitz EM (1994) Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev 8:1548–1560PubMedCrossRefGoogle Scholar
  17. Han MJ, Jung KH, Yi G, An G (2011) Rice importin β1 gene affects pollen tube elongation. Mol Cells 31:523–530PubMedCrossRefGoogle Scholar
  18. Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282PubMedCrossRefGoogle Scholar
  19. Hong LL, Qian Q, Zhu KM, Tang D, Huang ZJ, Gao L, Li M, Gu MH, Cheng ZK (2010) ELE restrains empty glumes from developing into lemmas. J Genet Genomics 37:101–115PubMedCrossRefGoogle Scholar
  20. Honma T, Goto K (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409:525–529PubMedCrossRefGoogle Scholar
  21. Horigome A, Nagasawa N, Ikeda K, Ito M, Itoh JI, Nagato Y (2009) Rice OPEN BEAK is a negative regulator of class 1 knox genes and a positive regulator of class B floral homeotic gene. Plant J 58:724–736PubMedCrossRefGoogle Scholar
  22. Hou J, Gao Z, Zhang Z, Chen S, Ando T, Zhang J, Wang X (2011) Isolation and characterization of an AGANOUS homologue PmAG from the Japanese apricot (Prunus mume Sieb. et Zucc.). Plant Mol Biol Rep 29:473–480CrossRefGoogle Scholar
  23. Ikeda K, Sunohara H, Nagato Y (2004) Developmental course of inflorescence and spikelet in rice. Breeding Sci 54:147–156CrossRefGoogle Scholar
  24. Ito T, Wellmer F, Yu H, Das P, Ito N, Alves-Ferreira M, Riechmann JL, Meyerowitz EM (2004) The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS. Nature 430:356–360PubMedCrossRefGoogle Scholar
  25. Itoh JI, Nonomura KI, Ikeda K, Yamaki S, Inukai Y, Yamagishi H, Kitano H, Nagato Y (2005) Rice plant development: from zygote to spikelet. Plant Cell Physiol 46:23–47PubMedCrossRefGoogle Scholar
  26. Jack T, Brockman LL, Meyerowitz EM (1992) The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68:683–687PubMedCrossRefGoogle Scholar
  27. Jack T, Fox GL, Meyerowitz EM (1994) Arabidopsis homeotic gene APETALA3 ectopic expression: transcriptional and posttranscriptional regulation determine floral organ identity. Cell 76:703–716PubMedCrossRefGoogle Scholar
  28. Jefferson RA (1989) The GUS reporter gene system. Nature 342:837–838PubMedCrossRefGoogle Scholar
  29. Jeon JS, Jang S, Lee S, Nam J, Kim C, Lee SH, Chung YY, Kim SR, Lee YH, Cho YG, An G (2000) leafy hull sterile1 is a homeotic mutation in a rice MADS-box gene affecting rice flower development. Plant Cell 12:871–889PubMedGoogle Scholar
  30. Jiao YQ, Wang YH, Xue DW, Wang J, Yan MX, Liu GF, Dong GJ, Zeng DL, Lu ZF, Zhu XD, Qian Q, Li JY (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 42:541–544PubMedCrossRefGoogle Scholar
  31. Jin Y, Luo Q, Tong HN, Wang AJ, Chen ZJ, Tang JF, Li DY, Zhao XF, Li XB, Wan JM, Jiao YL, Chu CC, Zhu LH (2011) An AT-hook gene is required for palea formation and floral organ number control in rice. Dev Biol 359:277–288PubMedCrossRefGoogle Scholar
  32. Kang HG, Jeon JS, Lee S, An G (1998) Identification of class B and class C floral organ identity genes from rice plants. Plant Mol Biol 38:1021–1029PubMedCrossRefGoogle Scholar
  33. Krizek BA, Fletcher JC (2005) Molecular mechanisms of flower development: an armchair guide. Genetics 6:688–698PubMedGoogle Scholar
  34. Li A, Zhang Y, Wu X, Tang W, Wu R, Dai Z, Liu G, Zhang H, Wu C, Chen G, Pan X (2008) DH1, a LOB domain-like protein required for glume formation in rice. Plant Mol Biol 66:491–502PubMedCrossRefGoogle Scholar
  35. Li HF, Liang WQ, Jia RD, Yin CS, Zong J, Kong HS, Zhang DB (2010) The AGL6-like gene OsMADS6 regulates floral organ and meristem identities in rice. Cell Res 20:299–313PubMedCrossRefGoogle Scholar
  36. Li H, Liu F, Liu G, Wang S, Guo X, Jing J (2012) Molecular cloning and expression analysis of 13 MADS-box genes in Betula platyphylla. Plant Mol Biol Rep 30:149–157CrossRefGoogle Scholar
  37. Lim J, Moon YH, An G, Jang SK (2000) Two rice MADS domain proteins interact with OsMADS1. Plant Mol Biol 44:513–527PubMedCrossRefGoogle Scholar
  38. Linder HP, Rudall PJ (2005) Evolutionary history of Poales. Annu Rev Ecol Evol Syst 36:107–124CrossRefGoogle Scholar
  39. Luo Q, Zhou KD, Zhao XF, Zeng QC, Xia H, Zhai WX, Xu JC, Wu XJ, Yang HS, Zhu LH (2005) Identification and fine mapping of a mutant gene for palealess spikelet in rice. Planta 221:222–230PubMedCrossRefGoogle Scholar
  40. Mao BG, Cheng ZJ, Lei CL, Xu FH, Gao SW, Ren YL, Wang J, Zhang X, Wang J, Wu FQ, Guo XP, Liu XL, Wu CY, Wang HY, Wan JM (2012) Wax crystal-sparse leaf2, a rice homologue of WAX2/GL1, is involved in synthesis of leaf cuticular wax. Planta 235:39–52. doi: 10.1007/s00425-011-1481-1 Google Scholar
  41. McCouch SR, Teytelman L, Xu Y et al (2002a) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.) (Supplement). DNA Res 9:257–279PubMedCrossRefGoogle Scholar
  42. McCouch SR, Teytelman L, Xu Y et al (2002b) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9:199–207PubMedCrossRefGoogle Scholar
  43. Melzer R, Kaufmann K, Theißen G (2006) Missing links: DNA-binding and target gene specificity of floral homeotic proteins. In: Soltis DE, Leebens-Mack JH, Soltis PS (eds) Developmental genetics of the flower. Advances in Botanical Research, vol 44. Academic, New York, pp 209–236Google Scholar
  44. Nagasawa N, Miyoshi M, Sano Y, Satoh H, Hirano H, Sakai H, Nagato Y (2003) SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development 130:705–718PubMedCrossRefGoogle Scholar
  45. Ohmori S, Kimizu M, Sugita M, Miyao A, Hirochika H, Uchida E, Nagato Y, Yoshida H (2009) MOSAIC FLORAL ORGANS1, an AGL6-like MADS box gene, regulates floral organ identity and meristem fate in rice. Plant Cell 21:3008–3025PubMedCrossRefGoogle Scholar
  46. Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200–203PubMedCrossRefGoogle Scholar
  47. Pozzi C, Faccoli P, Terzi V, Stanca AM, Cerioli S, Castiglioni P, Fink R, Capone R, Muller KJ, Bossinger G, Rohde W, Salamini F (2000) Genetics of mutation affecting the development of a barley floral bract. Genetics 154:1335–1346PubMedGoogle Scholar
  48. Prasad K, Sriram P, Kumar CS, Kushalappa K, Vijayraghavan U (2001) Ectopic expression of rice OsMADS1 reveals a role in specifying the lemma and palea, grass floral organs analogous to sepals. Dev Genes Evol 211:281–290PubMedCrossRefGoogle Scholar
  49. Prasad K, Parameswaran S, Vijayraghavan U (2005) OsMADS1, a rice MADS-box factor, controls differentiation of specific cell types in the lemma and palea and is an early-acting regulator of inner floral organs. Plant J 43:915–928PubMedCrossRefGoogle Scholar
  50. Sablowski RWM, Meyerowitz EM (1998) A homologue of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell 92:93–103PubMedCrossRefGoogle Scholar
  51. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108PubMedCrossRefGoogle Scholar
  52. Stoutjesdijk PA, Singh SP, Liu Q, Hurlstone CJ, Waterhouse PA, Green AG (2002) hpRNA-mediated targeting of the Arabidopsis FAD2 gene gives highly efficient and stable silencing. Plant Physiol 129:1723–1731PubMedCrossRefGoogle Scholar
  53. Tanaka W, Toriba T, Ohmori Y, Yoshida A, Kawai A, Mayama-Tsuchida T, Ichikawa H, Mitsuda N, Ohme-Takagi M, Hirano HY (2012) The YABBY gene TONGARI-BOUSHI1 is involved in lateral organ development and maintenance of meristem organization in the rice spikelet. Plant Cell 24:80–95. doi: 10.1105/tpc.111.094797 Google Scholar
  54. Theißen G (2001) Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4:75–85PubMedCrossRefGoogle Scholar
  55. Theißen G, Melzer R (2007a) Molecular mechanisms underlying origin and diversification of the angiosperm flower. Ann Bot 100:603–619PubMedCrossRefGoogle Scholar
  56. Theißen G, Melzer R (2007b) Combinatorial control of floral organ identity by MADS-domain transcription factors. In: Grasser KD (ed) Annual Plant Reviews, vol 29. Regulation of transcription in plants. Blackwell, Oxford. doi: 10.1002/9780470988886.ch10
  57. Thompson BE, Hake S (2009) Translational biology: from Arabidopsis flowers to grass inflorescence architecture. Plant Physiol 149:38–45PubMedCrossRefGoogle Scholar
  58. Wang K, Tang D, Hong L, Xu W, Huang J, Li M, Gu M, Xue Y, Cheng Z (2010) DEP and AFO regulate reproductive habit in rice. PLoS Genet 6:e1000818. doi: 10.1371/journal.pgen.1000818
  59. Whipple CJ, Ciceri P, Padilla CM, Ambrose BA, Bandong SL, Schmidt RJ (2004) Conservation of B-class floral homeotic gene function between maize and Arabidopsis. Development 131:6083–6091PubMedCrossRefGoogle Scholar
  60. Wu ZM, Zhang X, He B, Diao LP, Sheng SL, Wang JL, Guo XP, Su N, Wang LF, Jiang L, Wang CM, Zhai HQ, Wan JM (2007) A chlorophyll deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol 145:29–40PubMedCrossRefGoogle Scholar
  61. Wu W, Chen F, Jing D, Liu Z, Ma L (2012) Isolation and characterization of an AGAMOUS-like gene from Magnolia wufengensis (Magnoliaceae). Plant Mol Biol Rep 30:690–698CrossRefGoogle Scholar
  62. Xiao H, Tang JF, Li YF, Wang WM, Li XB, Jin L, Xie R, Luo HF, Zhao XF, Meng Z, He GH, Zhu LH (2009) STAMENLESS 1, encoding a single C2H2 zinc finger protein, regulates floral organ identity in rice. Plant J 59:789–801PubMedCrossRefGoogle Scholar
  63. Yamaguchi T, Hirano HY (2006) Function and diversification of MADS-box genes in rice. Sci World J 6:1923–1932CrossRefGoogle Scholar
  64. Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346:35–39PubMedCrossRefGoogle Scholar
  65. Yoshida H, Nagato Y (2011) Flower development in rice. J Exp Bot 62:4719–4730PubMedCrossRefGoogle Scholar
  66. Yoshida A, Suzaki T, Tanaka W, Hirano HY (2009) The homeotic gene long sterile lemma (G1) specifies sterile lemma identity in the rice spikelet. Proc Natl Acad Sci USA 106:20103–20108PubMedCrossRefGoogle Scholar
  67. Yuan Z, Gao S, Xue DW, Luo D, Li LT, Ding SY, Yao X, Wilson ZA, Qian Q, Zhang DB (2009) RETARDED PALEA1 controls palea development and floral zygomorphy in rice. Plant Physiol 149:235–244PubMedCrossRefGoogle Scholar
  68. Zhao L, Nakazawa M, Takase T, Manabe K, Kobayashi M, Seki M, Shinozaki K, Matsui M (2004) Overexpression of LSH1, a member of an uncharacterized gene family, causes enhanced light regulation of seedling development. Plant J 37:694–706PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Xiaoding Ma
    • 1
  • Zhijun Cheng
    • 1
  • Fuqing Wu
    • 1
  • Mingna Jin
    • 1
  • Liguo Zhang
    • 2
  • Feng Zhou
    • 2
  • Jiulin Wang
    • 1
  • Kunneng Zhou
    • 2
  • Jian Ma
    • 1
  • Qibing Lin
    • 1
  • Cailin Lei
    • 1
  • Jianmin Wan
    • 1
    • 2
    Email author
  1. 1.National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Science, Chinese Academy of Agricultural SciencesBeijingChina
  2. 2.National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina

Personalised recommendations