Plant Molecular Biology Reporter

, Volume 31, Issue 1, pp 32–37 | Cite as

Expression and Localization of Amorpha-4,11-diene Synthase in Artemisia annua L.

  • Gao-Bin Pu
  • Dong-Ming Ma
  • Hong Wang
  • He-Chun Ye
  • Ben-Ye Liu
Original Paper


Artemisia annua L. is the only commercial source of the widely used antimalarial compound artemisinin. Biosynthesis of artemisinin has been proposed to take place in glandular trichomes. The first committed step in the conversion of farnesyl diphosphate (FDP) to artemisinin is conducted by the amorpha-4,11-diene synthase (ADS). To explore the organ-specific and developmental distributions of ADS, rabbit polyclonal antibodies were raised against recombinant ADS produced in Escherichia coli from the corresponding A. annua cDNA. Protein gel blot analysis of different A. annua organs showed that ADS was most abundant in young leaves and flower buds. Minor amounts of ADS were found in mature leaves. These findings were generally consistent with the analysis of the transcript level of the ADS gene. Immunolocalization of ADS showed strong positive staining in apical meristems, young leaves and glandular trichomes. No staining was observed in other cells of the leaf. The whole mount hybridization revealed that ADS was not expressed in all glandular trichomes of mature leaves. Specific staining of ADS could be detected in about 10–40 % of glandular trichomes.


Artemisia annua L. Glandular trichome Amorpha-4,11-diene synthase Artemisinin Immunocytochemistry Immunohistochemistry 



This research was supported by the National High-tech R&D Program (863) of the Ministry of Sciences and Technology, China (2007AA021501); the Knowledge Innovation Program of the Chinese Academy of Sciences (KSCX2-SW-329); the National Natural Science Foundation of China (30672623, 60773164, 30470153).


  1. Bertea CM, Freije JR, van der Woude H, Verstappen FW, Perk L, Marquez V, De Kraker JW, Posthumus MA, Jansen BJ, de Groot A, Franssen MC, Bouwmeester HJ (2005) Identification of intermediates and enzymes involved in the early steps of artemisinin biosynthesis in Artemisia annua. Planta Med 71:40–47PubMedCrossRefGoogle Scholar
  2. Duke SO, Rex N, Paul RN (1993) Development and fine structure of the glandular trichomes of Artemisia annua L. Int J Plant Sci 154:107–118CrossRefGoogle Scholar
  3. Duke MV, Paul RN, Elsohly HN, Sturtz G, Duke SO (1994) Localization of artemisinin and artemisitene in foliar tissues of glanded and glandless biotypes of Artemisia annua. Int J Plant Sci 155:365–373CrossRefGoogle Scholar
  4. Falara V, Fotopoulos V, Margaritis T, Anastasaki T, Pateraki I, Bosabalidis AM, Kafetzopoulos D, Demetzos C, Pichersky E, Kanellis AK (2008) Transcriptome analysis approaches for the isolation of trichome-specific genes from the medicinal plant Cistus creticus subsp. creticus. Plant Mol Biol 68:633–651PubMedCrossRefGoogle Scholar
  5. Ferreira JF, Simon JE, Janick J (1995) Relationship of artemisinin content of tissue-cultured, greenhouse-grown, and field-grown plants of Artemisia annua. Planta Med 61:351–355PubMedCrossRefGoogle Scholar
  6. Fridman E, Wang J, Iijima Y, Froehlich JE, Gang DR, Ohlrogge J, Pichersky E (2005) Metabolic, genomic, and biochemical analyses of glandular trichomes from the wild tomato species Lycopersicon hirsutum identify a key enzyme in the biosynthesis of methylketones. Plant Cell 17:1252–1267PubMedCrossRefGoogle Scholar
  7. Gang DR, Wang J, Dudareva N, Nam KH, Simon JE, Lewinsohn E, Pichersky E (2001) An investigation of the storage and biosynthesis of phenylpropenes in sweet basil. Plant Physiol 125:539–555PubMedCrossRefGoogle Scholar
  8. Han JL, Wang H, Ye HC, Liu Y, Li ZQ, Zhang Y, Zhang YS, Yan F, Li GF (2005) High efficiency of genetic transformation and regeneration of Artemisia annua L. via Agrobacterium tumefaciens-mediated procedure. Plant Sci 168:73–80CrossRefGoogle Scholar
  9. Kim SH, Chang YJ, Kim SU (2008) Tissue specificity and developmental pattern of amorpha-4,11-diene synthase (ADS) proved by ADS promoter-driven GUS expression in the heterologous plant, Arabidopsis thaliana. Planta Med 74:188–193PubMedCrossRefGoogle Scholar
  10. Lange BM, Wildung MR, Stauber EJ, Sanchez C, Pouchnik D, Croteau R (2000) Probing essential oil biosynthesis and secretion by functional evaluation of expressed sequence tags from mint glandular trichomes. Proc Natl Acad Sci USA 97:2934–2939PubMedCrossRefGoogle Scholar
  11. Liersch R, Soicke H, Stehr C, Tullner HU (1986) Formation of artemisinin in Artemisia annua during one vegetation period. Planta Med 52:387–390CrossRefGoogle Scholar
  12. Lommen WJ, Schenk E, Bouwmeester HJ, Verstappen FW (2006) Trichome dynamics and artemisinin accumulation during development and senescence of Artemisia annua leaves. Planta Med 72:336–345PubMedCrossRefGoogle Scholar
  13. Ma C, Wang H, Lu X, Li H, Liu B, Xu G (2007) Analysis of Artemisia annua L. volatile oil by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. J Chromatogr A 25:50–53Google Scholar
  14. Ma D, Pu G, Lei C, Ma L, Wang H, Guo Y, Chen J, Du Z, Wang H, Li G, Ye H, Liu B (2009) Isolation and characterization of AaWRKY1, an Artemisia annua transcription factor that regulates the amorpha-4,11-diene synthase gene, a key gene of artemisinin biosynthesis. Plant Cell Physiol 50:2146–2161PubMedCrossRefGoogle Scholar
  15. Mercke P, Bengtsson M, Bouwmeester HJ, Posthumus MA, Brodelius PE (2000) Molecular cloning, expression, and characterization of amorpha-4,11-diene synthase, a key enzyme of artemisinin biosynthesis in Artemisia annua L. Arch Biochem Biophys 381:173–180PubMedCrossRefGoogle Scholar
  16. Murray CJ, Rosenfeld LC, Lim SS, Andrews KG, Foreman KJ, Haring D, Fullman N, Naghavi M, Lozano R, Lopez AD (2012) Global malaria mortality between 1980 and 2010: a systematic analysis. Lancet 379(9814):413–431PubMedCrossRefGoogle Scholar
  17. Nagel J, Culley LK, Lu Y, Liu E, Matthews PD, Stevens JF, Page JE (2008) EST analysis of hop glandular trichomes identifies an O-methyltransferase that catalyzes the biosynthesis of xanthohumol. Plant Cell 20:186–200PubMedCrossRefGoogle Scholar
  18. Olofsson L, EngstrÖm A, Lundgren A, Brodelius PE (2011) Relative expression of genes of terpene metabolism in different tissues of Artemisia annua L. BMC Plant Biol 11:45PubMedCrossRefGoogle Scholar
  19. Olsson ME, Olofsson LM, Lindahl AL, Lundgren A, Brodelius M, Brodelius PE (2009) Localization of enzymes of artemisinin biosynthesis to the apical cells of glandular secretory trichomes of Artemisia annua L. Phytochemistry 70:1123–1128PubMedCrossRefGoogle Scholar
  20. Pu GB, Ma DM, Chen JL, Ma LQ, Wang H, Li GF, Ye HC, Liu BY (2009) Salicylic acid activates artemisinin biosynthesis in Artemisia annua L. Plant Cell Rep 28(7):1127–1135PubMedCrossRefGoogle Scholar
  21. Sauer M, Paciorek T, Benkova E, Friml J (2006) Immunocytochemical techniques for whole-mount in situ protein localization in plants. Nat Protocols 1:98–103CrossRefGoogle Scholar
  22. Teoh KH, Polichuk DR, Reed DW, Nowak G, Covello PS (2006) Artemisia annua L. (Asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin. FEBS Lett 580:1411–1416PubMedCrossRefGoogle Scholar
  23. Wallaart TE, Pras N, Beekman AC, Quax WJ (2000) Seasonal variation of artemisinin and its biosynthetic precursors in plants of Artemisia annua of different geographical origin: proof for the existence of chemotypes. Planta Med 66:57–62PubMedCrossRefGoogle Scholar
  24. Wallaart TE, Bouwmeester HJ, Hille J, Poppinga L, Maijers NC (2001) Amorpha-4,11-diene synthase: cloning and functional expression of a key enzyme in the biosynthetic pathway of the novel antimalarial drug artemisinin. Planta 212:460–465PubMedCrossRefGoogle Scholar
  25. Wang G, Tian L, Aziz N, Broun P, Dai X, He J, King A, Zhao PX, Dixon RA (2008) Terpene biosynthesis in glandular trichomes of hop. Plant Physiol 148:1254–1266PubMedCrossRefGoogle Scholar
  26. Wang HZ, Olofsson L, Lundgren A, Brodelius PE (2011) Trichome-specific expression of amorpha-4,11-diene synthase, a key enzyme of artemisinin biosynthesis in Artemisia annua, as reported by a promoter-GUS fusion. Am J Plant Sci 2:619–628CrossRefGoogle Scholar
  27. Weathers PJ, Cheetham RD, Follansbee E (1994) Artemisinin production by transformed roots of Artemisia annua. Biotechnol Lett 16:1281–1286Google Scholar
  28. Woerdenbag HJ, Pras N, Chan NG, Bang BT, Bos R, van Uden W, Van YP, Van Boi N, Batterman S, Lugt CB (1994) Artemisinin, related sesquiterpenes, and essential oil in Artemisia annua during a vegetation period in Vietnam. Planta Med 60:272–275PubMedCrossRefGoogle Scholar
  29. Zhang Y, Teoh KH, Reed DW, Maes L, Goossens A, Olson DJ, Ross AR, Covello PS (2008) The molecular cloning of artemisinic aldehyde Delta11(13) reductase and its role in glandular trichome-dependent biosynthesis of artemisinin in Artemisia annua. J Biol Chem 283:21501–21508PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Gao-Bin Pu
    • 1
    • 2
  • Dong-Ming Ma
    • 1
  • Hong Wang
    • 3
  • He-Chun Ye
    • 1
  • Ben-Ye Liu
    • 1
  1. 1.Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of BotanyThe Chinese Academy of SciencesBeijingChina
  2. 2.Shandong Yingcai UniversityJinanChina
  3. 3.Graduate University of Chinese Academy of SciencesBeijingChina

Personalised recommendations