Plant Molecular Biology Reporter

, Volume 30, Issue 6, pp 1322–1328 | Cite as

Universal ITS2 Barcoding DNA Region Coupled with High-Resolution Melting (HRM) Analysis for Seed Authentication and Adulteration Testing in Leguminous Forage and Pasture Species

  • Ioannis Ganopoulos
  • Panagiotis Madesis
  • Athanasios Tsaftaris
Original Paper


Legume species are part of a very important agricultural family, second only to cereals. Their importance for sustainable agriculture worldwide comes from their nitrogen-fixing ability. They include mainly annual grain crops and also very important perennial forage and pasture species. Given their small size, seed admixture and adulteration are a common problem, lowering the forage value, creating weed components in the grassland and causing digestive problems to animals. Here we report the application of the Barcode-DNA High-Resolution Melting (Bar-HRM) analysis method using the universal nuclear plant DNA barcoding region ITS2 for the identification, adulteration and quantification of the main pasture species. Bar-HRM detected Medicago lupulina adulterants in Trifolium pratense seeds as low as 1:100. In conclusion, Bar-HRM analysis could be a faster with higher resolution and cost-effective alternative method to authenticate forage and pasture species and quantitatively detect the purity of their seeds or their feed products.


Forage Pasture Seed authentication Adulteration Bar-HRM 



We thank Dr. Ralli from the Seed Bank of Greece of the National Agricultural Research Foundation for offering the material used in this study, Dr. Argiriou of our institute for his help in preparing the figures of the present manuscript and Mr. Pasentsis for his technical assistance. We also thank Mrs. Despoina Loukidou and Mrs. Laura Dadurian for proofreading the manuscript. The continuous support of the General Secretariat for Research and Technology is also acknowledged.


  1. Australian Bureau of Statistics (2000) Australian Health Survey.
  2. Chase MW, Cowan RS, Hollingsworth PM, van den Berg C et al (2007) A proposal for a standardised protocol to barcode all land plants. Taxon 56:295–299Google Scholar
  3. Cheng JC, Huang CL, Lin CC, Chen CC, Chang YC, Chang SS, Tseng CP (2006) Rapid detection and identification of clinically important bacteria by high-resolution melting analysis after broad-range ribosomal RNA real-time PCR. Clin Chem 52:1997–2004PubMedCrossRefGoogle Scholar
  4. Dalmasso A, Fontanella E, Piatti P, Civera T, Secchi C, Bottero MT (2007) Identification of four tuna species by means of real-time PCR and melting curve analysis. Vet Res Commun 31:355–357PubMedCrossRefGoogle Scholar
  5. Ferri G, Alu M, Corradini B, Beduschi G (2009) Forensic botany: species identification of botanical trace evidence using a multigene barcoding approach. Int J Legal Med 123:395–401PubMedCrossRefGoogle Scholar
  6. Frantová E, Ofúkaný L (1990) Poisonous plants. Vydavate’stvo Obzor, Bratislava, in SlovakGoogle Scholar
  7. Ganopoulos I, Argiriou A, Tsaftaris A (2011a) Adulterations in Basmati rice detected quantitatively by combined use of microsatellite and fragrance typing with High Resolution Melting (HRM) analysis. Food Chem 129:652–659CrossRefGoogle Scholar
  8. Ganopoulos I, Argiriou A, Tsaftaris A (2011b) Microsatellite high resolution melting (SSR-HRM) analysis for authenticity testing of protected designation of origin (PDO) sweet cherry products. Food Control 22:532–541CrossRefGoogle Scholar
  9. Ganopoulos I, Madesis P, Darzentas N, Argiriou A, Tsaftaris A (2012) Barcode High Resolution Melting (Bar-HRM) analysis for detection and quantification of PDO “Fava Santorinis” (Lathyrus clymenum) adulterants. Food Chem 133:505–512CrossRefGoogle Scholar
  10. Gao T, Chen SL (2009) Authentication of the medicinal plants in Fabaceae by DNA barcoding technique. Planta Med 75:417–417Google Scholar
  11. Hewson K, Noormohammadi AH, Devlin JM, Mardani K, Ignjatovic J (2009) Rapid detection and non-subjective characterisation of infectious bronchitis virus isolates using high-resolution melt curve analysis and a mathematical model. Arch Virol 154:649–660PubMedCrossRefGoogle Scholar
  12. Hillman FH (1909) The adulteration of forage-plant seeds. GPO, WashingtonGoogle Scholar
  13. Hollingsworth PM (2011) Refining the DNA barcode for land plants. Proc Natl Acad Sci U S A 108:19451–19452PubMedCrossRefGoogle Scholar
  14. Hollingsworth PM, Forrest LL, Spouge JL, Hajibabaei M, Ratnasingham S, van der Bank M, Chase MW, Cowan RS, Erickson DL, Fazekas AJ, Graham SW, James KE, Kim KJ, Kress WJ, Schneider H, van AlphenStahl J, Barrett SCH, van den Berg C, Bogarin D, Burgess KS, Cameron KM, Carine M, Chacon J, Clark A, Clarkson JJ, Conrad F, Devey DS, Ford CS, Hedderson TAJ, Hollingsworth ML, Husband BC, Kelly LJ, Kesanakurti PR, Kim JS, Kim YD, Lahaye R, Lee HL, Long DG, Madrinan S, Maurin O, Meusnier I, Newmaster SG, Park CW, Percy DM, Petersen G, Richardson JE, Salazar GA, Savolainen V, Seberg O, Wilkinson MJ, Yi DK, Little DP, Grp CPW (2009) A DNA barcode for land plants. Proc Natl Acad Sci U S A 106:12794–12797CrossRefGoogle Scholar
  15. Jaakola L, Suokas M, Haggman H (2010) Novel approaches based on DNA barcoding and high-resolution melting of amplicons for authenticity analyses of berry species. Food Chem 123:494–500CrossRefGoogle Scholar
  16. Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH (2005) Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci U S A 102:8369–8374PubMedCrossRefGoogle Scholar
  17. Le Buanec B (1996) Globalization of the seed industry: current situation and evolution. International Seed Testing Association, ZürichGoogle Scholar
  18. Li JH, Yin YP, Zheng HP, Zhong MY, Peng RR, Wang B, Chen XS (2010) A high-resolution melting analysis for genotyping urogenital Chlamydia trachomatis. Diagn Microbiol Infect Dis 68:366–374PubMedCrossRefGoogle Scholar
  19. Li DZ, Gao LM, Li HT, Wang H, Ge XJ, Liu JQ, Chen ZD, Zhou SL, Chen SL, Yang JB, Fu CX, Zeng CX, Yan HF, Zhu YJ, Sun YS, Chen SY, Zhao L, Wang K, Yang T, Duan GW (2011a) Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc Natl Acad Sci U S A 108:19641–19646PubMedCrossRefGoogle Scholar
  20. Li J, Wang X, Dong R, Yang Y, Zhou J, Yu C, Cheng Y, Yan C, Chen J (2011b) Evaluation of high-resolution melting for gene mapping in rice. Plant Mol Biol Rep 29:979–985CrossRefGoogle Scholar
  21. Mader E, Lukas B, Novak J (2008) A strategy to setup codominant microsatellite analysis for high-resolution-melting-curve-analysis (HRM). BMC Genet 9:69Google Scholar
  22. Mader E, Ruzicka J, Schmiderer C, Novak J (2011) Quantitative high-resolution melting analysis for detecting adulterations. Anal Biochem 409:153–155PubMedCrossRefGoogle Scholar
  23. Maeta K, Ochi T, Tokimoto K, Shimomura N, Maekawa N, Kawaguchi N, Nakaya M, Kitamoto Y, Aimi T (2008) Rapid species identification of cooked poisonous mushrooms by using real-time PCR. Appl Environ Microbiol 74:3306–3309PubMedCrossRefGoogle Scholar
  24. Míka V (2001) Phenolic substances in meadow plants. VÚRV, Prague, in CzechGoogle Scholar
  25. Monis PT, Giglio S, Saint CP (2005) Comparison of SYTO9 and SYBR Green I for real-time polymerase chain reaction and investigation of the effect of dye concentration on amplification and DNA melting curve analysis. Anal Biochem 340:24–34PubMedCrossRefGoogle Scholar
  26. Reed GH, Wittwer CT (2004) Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis. Clin Chem 50:1748–1754Google Scholar
  27. Watson LE, Sayed-Ahmed H, Badr A (2000) Molecular phylogeny of Old World Trifolium (Fabaceae), based on plastid and nuclear markers. Plant Syst Evol 224:153–171CrossRefGoogle Scholar
  28. Williams WM, Ansari HA, Ellison NW, Hussain SW (2001) Evidence of three subspecies in Trifolium nigrescens Viv. Ann Bot 87:683–691CrossRefGoogle Scholar
  29. Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ (2003) High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem 49:853–860PubMedCrossRefGoogle Scholar
  30. Wu SB, Wirthensohn MG, Hunt P, Gibson JP, Sedgley M (2008) High resolution melting analysis of almond SNPs derived from ESTs. Theor Appl Genet 118:1–14Google Scholar
  31. Yao H, Song J, Liu C, Luo K, Han J, Li Y, Pang X, Xu H, Zhu Y, Xiao P, Chen S (2010) Use of ITS2 region as the universal DNA barcode for plants and animals. PLoS One 5:e13102PubMedCrossRefGoogle Scholar
  32. Zohary M, Heller D (1984) The genus Trifolium. Israel Academy of Sciences and Humanities, JerusalemGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Ioannis Ganopoulos
    • 1
    • 2
  • Panagiotis Madesis
    • 2
  • Athanasios Tsaftaris
    • 1
    • 2
  1. 1.Department of Genetics and Plant Breeding, School of AgricultureAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Institute of Agrobiotechnology, CERTHThermiGreece

Personalised recommendations