Plant Molecular Biology Reporter

, Volume 30, Issue 5, pp 1276–1282 | Cite as

A Cost-effective Double-Stranded cDNA Synthesis for Plant Microarrays

  • Daniel Gonzalez-Ibeas
  • Jose Blanca
  • Joaquin Cañizares
  • Veronica Truniger
  • Miguel A. Aranda
Brief Communication


DNA microarrays are two-dimensional arrangements of specific probes deposited on a substrate that have been widely used in gene expression analysis by measuring mRNA accumulation. The use of this type of microarrays involves the synthesis of cDNA, which has to be double stranded (ds) if the microarray probes are of the positive strand. We have used a melon custom-synthesized noncommercial NimbleGen microarray to evaluate a modification of the SMART™ (switching mechanism at the 5′ end of the RNA transcript) procedure of ds cDNA synthesis, which differs substantially in its economical cost relative to a widely recommended method based on the nick translation approach. The results suggested that both methods produce cDNA representative of the transcriptome to a similar extent, indicating that the alternative technique provides a cheaper method of ds cDNA synthesis for plant microarray gene expression assays when the RNA starting material is not limiting.


Microarray Double-stranded cDNA Gene expression 



This work was supported by grant AGL2009-07552/AGR. We thank Mari Carmen Montesinos and Blanca Gosalvez for their technical assistance.


  1. Barbulovic-Nad I, Lucente M, Sun Y, Zhang M, Wheeler AR, Bussmann M (2006) Bio-microarray fabrication techniques—a review. Crit Rev Biotechnol 26:237–259PubMedCrossRefGoogle Scholar
  2. Barrett T, Troup DB, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Muertter RN, Holko M, Ayanbule O, Yefanov A, Soboleva A (2011) NCBI GEO: archive for functional genomics data sets—10 years on. Nucleic Acids Res 39:D1005–D1010PubMedCrossRefGoogle Scholar
  3. Carvalho B, Bengtsson H, Speed TP, Irizarry RA (2007) Exploration, normalization, and genotype calls of high-density oligonucleotide SNP array data. Biostatistics 8:485–499PubMedCrossRefGoogle Scholar
  4. Dafforn A, Chen P, Deng G, Herrler M, Iglehart D, Koritala S, Lato S, Pillarisetty S, Purohit R, Wang M, Wang S, Kurn N (2004) Linear mRNA amplification from as little as 5 ng total RNA for global gene expression analysis. Biotechniques 37:854–857PubMedGoogle Scholar
  5. Dudoit S, Gentleman RC, Quackenbush J (2003) Open source software for the analysis of microarray data. Biotechniques, Suppl:45–51Google Scholar
  6. Gonzalez-Ibeas D, Blanca J, Roig C, Gonzalez-To M, Pico B, Truniger V, Gomez P, Deleu W, Cano-Delgado A, Arus P, Nuez F, Garcia-Mas J, Puigdomenech P, Aranda M (2007) MELOGEN: an EST database for melon functional genomics. BMC Genomics 8:306PubMedCrossRefGoogle Scholar
  7. Gonzalez-Ibeas D, Cañizares J, Aranda MA (2011) Microarray analysis shows that recessive resistance to Watermelon mosaic virus in melon is associated with the induction of defense response genes. Mol Plant-Microbe Interact 25:107–118CrossRefGoogle Scholar
  8. Gubler U, Hoffman BJ (1983) A simple and very efficient method for generating cDNA libraries. Gene 25:263–269PubMedCrossRefGoogle Scholar
  9. Lueders T, Friedrich MW (2003) Evaluation of PCR amplification bias by terminal restriction fragment length polymorphism analysis of small-subunit rRNA and mcrA genes by using defined template mixtures of methanogenic pure cultures and soil DNA extracts. Appl Environ Microbiol 69:320–326PubMedCrossRefGoogle Scholar
  10. Mascarell-Creus A, Cañizares J, Vilarrasa-Blasi J, Mora-García S, Blanca J, Gonzalez-Ibeas D, Saladié M, Roig C, Deleu W, Picó-Silvent B, López-Bigas N, Aranda MA, Garcia-Mas J, Nuez F, Puigdomènech P, Caño-Delgado AI (2009) An oligo-based microarray offers novel transcriptomic approaches for the analysis of pathogen resistance and fruit quality traits in melon (Cucumis melo L.). BMC Genomics 10:467PubMedCrossRefGoogle Scholar
  11. Mathieu-Daudé F, Welsh J, Vogt T, McClelland M (1996) DNA rehybridization during PCR: the “Cot effect” and its consequences. Nucleic Acids Res 24:2080–2086PubMedCrossRefGoogle Scholar
  12. Matz M, Shagin D, Bogdanova E, Britanova O, Lukyanov S, Diatchenko L, Chenchik A (1999) Amplification of cDNA ends based on template-switching effect and step-out PCR. Nucleic Acids Res 27:1558–1560PubMedCrossRefGoogle Scholar
  13. Nygaard V, Løland A, Holden M, Langaas M, Rue H, Liu F, Myklebost O, Fodstad Ø, Hovig E, Smith-Sørensen B (2003) Effects of mRNA amplification on gene expression ratios in cDNA experiments estimated by analysis of variance. BMC Genomics 4:11PubMedCrossRefGoogle Scholar
  14. Okayama H, Berg P (1982) High-efficiency cloning of full-length cDNA. Mol Cell Biol 2:161–170PubMedGoogle Scholar
  15. Page GP, Coulibaly I (2008) Bioinformatic tools for inferring functional information from plant microarray data: tools for the first steps. Int J Plant Genomics 2008:147563PubMedGoogle Scholar
  16. Polz MF, Cavanaugh CM (1998) Bias in template-to-product ratios in multitemplate PCR. Appl Environ Microbiol 64:3724–3730PubMedGoogle Scholar
  17. Puskás LG, Zvara A, Hackler L Jr, Van Hummelen P (2002) RNA amplification results in reproducible microarray data with slight ratio bias. Biotechniques 32:1330–1340PubMedGoogle Scholar
  18. R Development Core Team. R (2010) A language and environment for statistical computing. Vienna, AustriaGoogle Scholar
  19. Raychaudhuri S, Stuart JM, Altman RB (2000) Principal components analysis to summarize microarray experiments: application to sporulation time series. Pac Symp Biocomput 2000:455–466Google Scholar
  20. Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, Howe EA, Li J, Thiagarajan M, White JA, Quackenbush J (2006) TM4 microarray software suite. Methods Enzymol 411:134–193PubMedCrossRefGoogle Scholar
  21. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470PubMedCrossRefGoogle Scholar
  22. Shagin DA, Rebrikov DV, Kozhemyako VB, Altshuler IM, Shcheglov AS, Zhulidov PA, Bogdanova EA, Staroverov DB, Rasskazov VA, Lukyanov S (2002) A novel method for SNP detection using a new duplex-specific nuclease from crab hepatopancreas. Genome Res 12:1935–1942PubMedCrossRefGoogle Scholar
  23. Soria-Guerra RE, Rosales-Mendoza S, Gasic K, Wisniewski ME, Band M, Korban SS (2011) Gene expression is highly regulated in early developing fruit of apple. Plant Mol Biol Rep 29:885–897CrossRefGoogle Scholar
  24. Stolf-Moreira R, Lemos EGM, Carareto-Alves L, Marcondes J, Pereira SS, Rolla AAP, Pereira RM, Neumaier N, Binneck E, Abdelnoor RV, Oliveira MCN, Marcelino FC, Farias JRB, Nepomuceno AL (2010) Transcriptional profiles of roots of different soybean genotypes subjected to drought stress. Plant Mol Biol Rep 29:19–34CrossRefGoogle Scholar
  25. Suzuki MT, Giovannoni SJ (1996) Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol 62:625–630PubMedGoogle Scholar
  26. Van Gelder RN, von Zastrow ME, Yool A, Dement WC, Barchas JD, Eberwine JH (1990) Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc Natl Acad Sci U S A 87:1663–1667PubMedCrossRefGoogle Scholar
  27. Wang E, Miller LD, Ohnmacht GA, Liu ET, Marincola FM (2000) High-fidelity mRNA amplification for gene profiling. Nat Biotechnol 18:457–459PubMedCrossRefGoogle Scholar
  28. Yang G, Zhou R, Tang T, Chen X, Ouyang J, He L, Li W, Chen S, Guo M, Li X, Shi S (2010) Gene expression profiles in response to salt stress in Hibiscus tiliaceus. Plant Mol Biol Rep 29:609–617CrossRefGoogle Scholar
  29. Zhu YY, Machleder EM, Chenchik A, Li R, Siebert PD (2001) Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction. Biotechniques 30:892–897PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Daniel Gonzalez-Ibeas
    • 1
  • Jose Blanca
    • 2
  • Joaquin Cañizares
    • 2
  • Veronica Truniger
    • 1
  • Miguel A. Aranda
    • 1
  1. 1.Departamento de Biología del Estrés y Patología VegetalCentro de Edafología y Biología Aplicada del Segura (CEBAS)–CSICMurciaSpain
  2. 2.Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV)–UPVValenciaSpain

Personalised recommendations