Plant Molecular Biology Reporter

, Volume 30, Issue 5, pp 1149–1157

Cloning and Characterization of MxVHA-c, a Vacuolar H+-ATPase Subunit C Gene Related to Fe Efficiency from Malus xiaojinensis

  • Qian Zhang
  • Yi Wang
  • Xin Zhong Zhang
  • Li Li Yin
  • Ting Wu
  • Xue Feng Xu
  • Wen Suo Jia
  • Zhen Hai Han
Original Paper

Abstract

The vacuolar H+-ATPase plays a crucial role in secondary transport and in plant response to environmental stress. In this study, a vacuolar H+-ATPase (MxVHA-c) gene, consisting of an ORF of 498 base pairs and 165 amino acid residues, has been cloned from the iron-efficient genotype of Malus xiaojinensis. Subsequently, this gene has been targeted to the tonoplast using transient expression analysis. Quantitative real-time (qRT) PCR results reveal that the MxVHA-c gene is expressed in both roots and leaves of Fe-deficient plants; however, it is sensitive to iron stress in roots. This suggests that MxVHA-c expression in roots may mediate iron-dependent responses. MxVHA-c expression is up-regulated following exogenous treatment with abscisic acid (ABA) and down-regulated following treatment with CaCl2. Overexpression of the MxVHA-c gene in yeast strains has revealed that MxVHA-c transiently alleviated cadmium toxicity via the Cd2+/H+ antiport protein. H+-ATPase activity is slightly increased in yeast overexpressing the MxVHA-c gene compared to that in yeast transformed with an empty vector. In addition, this transgenic yeast strain can grow in a liquid medium containing 40 μM ferrozine. These findings may provide useful information in elucidating molecular mechanisms that mediate resistance to iron deficiency.

Keywords

H+-ATPase activity Iron deficiency Malus xiaojinensis Vacuolar H+-ATPase 

Abbreviations

qRT-PCR

Quantitative real-time polymerase chain reaction

VHA

Vacuolar H+-ATPase

YPD

Yeast growth medium

SD

Selection medium

RFU

Relative fluorescence unit

eGFP

Enhanced green fluorescent protein

References

  1. Aviezer-Hagai K, Nelson H, Nelson N (2000) Cloning and expression of cDNAs encoding plant V-ATPase subunits in the corresponding yeast null mutants. Biochim Biophys Acta 1459:489–498PubMedCrossRefGoogle Scholar
  2. Briat JF, Fobis-Loisy I, Grignon N, Lobreaux S, Pascal N, Savino G, Thoiron S, von Wiren N, Van Wuytswinkel O (1995) Cellular and molecular aspects of iron metabolism in plants. Biol Cell 84:69–81CrossRefGoogle Scholar
  3. Chinnusamy V, Zhu JH, Zhu JK (2006) Salt stress signaling and mechanisms of plant salt tolerance. Genet Eng 27:141–177CrossRefGoogle Scholar
  4. Cohen CK, Fox TC, Garvin DF, Kochian LV (1998) The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants. Plant Physiol 116:1063–1072PubMedCrossRefGoogle Scholar
  5. Curie C, Briat JF (2003) Iron transport and signaling in plants. Annu Rev Plant Biol 54:183–206PubMedCrossRefGoogle Scholar
  6. Dettmer J, Liu TY, Schumacher K (2010) Functional analysis of Arabidopsis V-ATPase subunit VHA-E isoforms. Eur J Cell Biol 89:152–156PubMedCrossRefGoogle Scholar
  7. Drory O, Frolow F, Nelson N (2004) Crystal structure of yeast V-ATPase subunit C reveals its stator function. EMBO Rep 5:1148–1152PubMedCrossRefGoogle Scholar
  8. Fasano JM, Swanson SJ, Blancaflor EB, Dowd PE, Kao TH, Gilroy S (2001) Changes in root cap pH are required for the gravity response of the Arabidopsis root. Plant Cell 13:907–921PubMedGoogle Scholar
  9. Fu WD, Shuai L, Yao JT, Yu SH, Liu FL, Duan DL (2010) Molecular cloning and analysis of a cytosolic Hsp70 gene from Enteromorpha prolifera (Ulvophyceae, Chlorophyta). Plant Mol Biol Report 28:430–437CrossRefGoogle Scholar
  10. Gao CQ, Wang YC, Jiang B, Liu GF, Yu LL, Wei ZG, Yang CP (2011) A novel vacuolar membrane H+-ATPase c subunit gene (ThVHAc1) from Tamarix hispida confers tolerance to several abiotic stresses in Saccharomyces cerevisiae. Mol Biol Rep 38:957–963PubMedCrossRefGoogle Scholar
  11. Gasic K, Hernandez A, Korban SS (2004) RNA extraction from different apple tissues rich in polyphenols and polysaccharides for cDNA library construction. Plant Mol Biol Report 22:437a–437gCrossRefGoogle Scholar
  12. Gaxiola RA, Palmgren MG, Schumacher K (2007) Plant proton pumps. FEBS Lett 581:2204–2214PubMedCrossRefGoogle Scholar
  13. Han ZH, Shen T, Korcak RF, Baligar VC (1994a) Screening for iron-efficient species in the genus Malus. J Plant Nutr 17:579–592CrossRefGoogle Scholar
  14. Han ZH, Wang Q, Shen T (1994b) Comparison of some physiological and biochemical characteristics between iron-efficient and iron-inefficient species in genus Malus. J Plant Nutr 17:1257–1264CrossRefGoogle Scholar
  15. Hirata T, Iwamoto-Kihara A, Sun-Wada GH, Okajima T, Wada Y, Futai M (2003) Subunit rotation of vacuolar-type proton pumping ATPase: relative rotation of the G and C subunits. J Biol Chem 278:23714–23719PubMedCrossRefGoogle Scholar
  16. Kabała K, Janicka-Russak M, Burzynski M, Kłobus G (2008) Comparison of heavy metal effect on the proton pumps of plasma membrane and tonoplast in cucumber root cells. J Plant Physiol 165:278–288PubMedCrossRefGoogle Scholar
  17. Kasai M, Yamamoto Y, Matsumoto H (1994) In vivo treatment barley roots with vanadate increases vacuolar H+-translocating ATPase activity of the tonoplast-enriched membrane vesicles and the level of endogenous ABA. Plant Cell Physiol 35:291–295Google Scholar
  18. Kim SA, Punshon T, Lanzirotti A, Li LT, Alonso JM, Ecker JR, Kaplan J, Guerinot ML (2006) Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Science 314:1295–1298PubMedCrossRefGoogle Scholar
  19. Kluge C, Golldack D, Dietz KJ (1999) Subunit D of the vacuolar H+-ATPase of Arabidopsis thaliana. Biochim Biophys Acta 1419:105–110PubMedCrossRefGoogle Scholar
  20. Lanquar V, Lelievre F, Bolte S, Hames C, Alcon C, Neumann D, Vansuyt G, Curie C, Schroder A, Kramer U, Barbier-Brygoo H, Thomine S (2005) Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. EMBO J 24:4041–4051PubMedCrossRefGoogle Scholar
  21. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−△△CT method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  22. Marschner H, Romheld V, Kissel M (1986) Different strategies in higher plants in mobilization and uptake of iron. J Plant Nutr 9:695–713CrossRefGoogle Scholar
  23. Mori S (1999) Iron acquisition by plants. Curr Opin Plant Biol 2:250–253PubMedCrossRefGoogle Scholar
  24. Nishi T, Forgac M (2002) The vacuolar (H+)-ATPases—nature’s most versatile proton pumps. Nat Rev Mol Cell Biol 3:94–103PubMedCrossRefGoogle Scholar
  25. Padmanaban S, Lin XY, Perera I, Kawamura Y, Sze H (2004) Differential expression of vacuolar H+-ATPase subunit c genes in tissues active in membrane trafficking and their roles in plant growth as revealed by RNAi. Plant Physiol 134:1514–1526PubMedCrossRefGoogle Scholar
  26. Prasad MNV (1995) Cadmium toxicity and tolerance in vascular plants. Environ Exp Bot 35:525–545CrossRefGoogle Scholar
  27. Qi JN, Yu SC, Zhang FL, Shen XQ, Zhao XY, Yu YJ, Zhang DS (2010) Reference gene selection for real-time quantitative polymerase chain reaction of mRNA transcript levels in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Plant Mol Biol Report 28:597–604CrossRefGoogle Scholar
  28. Ratajczak R (2000) Structure, function and regulation of the plant vacuolar H+-translocating ATPase. Biochim Biophys Acta 1465:17–36PubMedCrossRefGoogle Scholar
  29. Rouquie D, Tournaire-Roux C, Szponarski W, Rossignol M, Doumas P (1998) Cloning of the V-ATPase subunit G in plant: functional expression and sub-cellular localization. FEBS Lett 437:287–292PubMedCrossRefGoogle Scholar
  30. Schumacher K, Krebs M (2010) The V-ATPase: small cargo, large effects. Curr Opin Plant Biol 13:724–730PubMedCrossRefGoogle Scholar
  31. Sze H, Schumacher K, Müller ML, Padmanaban S, Taiz L (2002) A simple nomenclature for a complex proton pump: VHA genes encode the vacuolar H+-ATPase. Trends Plant Sci 7:157–161PubMedCrossRefGoogle Scholar
  32. Tai HH, Conn G, Davidson C, Bud Platt HW (2009) Arbitrary multi-gene reference for normalization of real-time PCR gene expression data. Plant Mol Biol Report 27:315–320CrossRefGoogle Scholar
  33. Tyagi W, Rajagopal D, Singla-Pareek SL, Reddy MK, Sopory SK (2005) Cloning and regulation of a stress-regulated Pennisetum glaucum vacuolar ATPase c gene and characterization of its promoter that is expressed in shoot hairs and floral organs. Plant Cell Physiol 46:1411–1422PubMedCrossRefGoogle Scholar
  34. Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A et al (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839PubMedCrossRefGoogle Scholar
  35. Wan CY, Wilkins TA (1994) Isolation of multiple cDNAs encoding the vacuolar H+-ATPase subunit B from developing cotton (Cossypium hirsutum 1.) ovules. Plant Physiol 106:393–394PubMedCrossRefGoogle Scholar
  36. Xiao ZY, Tan KL, Hu MY, Liao P, Chen KJ, Luo M (2008) Cloning and expression analysis of GhDET3, a vacuolar H+-ATPase subunit C gene, from cotton. J Genet Genomics 35:307–312PubMedCrossRefGoogle Scholar
  37. Xu CX, Zheng L, Gao CQ, Wang C, Liu GF, Jiang J, Wang YC (2010) Overexpression of a vacuolar H+-ATPase c subunit gene mediates physiological changes leading to enhanced salt tolerance in transgenic tobacco. Plant Mol Biol Report 29:424–430CrossRefGoogle Scholar
  38. Xu HM, Wang Y, Chen F, Zhang XZ, Han ZH (2011) Isolation and characterization of the iron-regulated MxbHLH01 gene in Malus xiaojinensis. Plant Mol Biol Report 29:936–942CrossRefGoogle Scholar
  39. Yang TJW, Lin WD, Schmidt W (2010) Transcriptional profiling of the Arabidopsis iron deficiency response reveals conserved transition metal homeostasis networks. Plant Physiol 152:2130–2141PubMedCrossRefGoogle Scholar
  40. Yao YX, Li M, Liu Z, You C-X, Wang D-M, Zhai H, Hao Y-J (2009) Molecular cloning of three malic acid related genes MdPEPC, MdVHA-A, MdcyME and their expression analysis in apple fruits. Sci Hortic 122:404–408CrossRefGoogle Scholar
  41. Zhang JH, Liu YP, Pan QH, Zhan JC, Wang XQ, Huang WD (2006) Changes in membrane-associated H+-ATPase activities and amounts in young grape plants during the cross adaptation to temperature stresses. Plant Sci 170:768–777CrossRefGoogle Scholar
  42. Zhang QX, Xu XF, Wang Y, Li TZ, Han ZH (2009) Intracellular localization of Na+/H+ antiporter from Malus zumi (MzNHX1). Afr J Biotechnol 8:6784–6786Google Scholar
  43. Zhao Q, Zhao YJ, Zhao BC, Ge RC, Li M, Shen YZ, Huang ZJ (2009) Cloning and functional analysis of wheat V-H+-ATPase subunit genes. Plant Mol Biol 69:33–46PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Qian Zhang
    • 1
  • Yi Wang
    • 1
  • Xin Zhong Zhang
    • 1
  • Li Li Yin
    • 1
  • Ting Wu
    • 1
  • Xue Feng Xu
    • 1
  • Wen Suo Jia
    • 1
  • Zhen Hai Han
    • 1
  1. 1.Institute for Horticultural PlantsChina Agricultural UniversityBeijingPeople’s Republic of China

Personalised recommendations