Plant Molecular Biology Reporter

, Volume 30, Issue 5, pp 1073–1079 | Cite as

Cytogeographic Distribution and Genome Size Variation in Prairie Cordgrass (Spartina pectinata Bosc ex Link)

  • Sumin Kim
  • A. Lane Rayburn
  • Allen Parrish
  • D. K. Lee
Original Paper


Prairie cordgrass plants (Spartina pectinata Bosc ex Link) were examined from 61 locations representing the geographic distribution of prairie cordgrass in the U.S. Using flow cytometry, the genome size of 183 individual plants of prairie cordgrass was determined, and the chromosome counts were obtained. Three distinct ploidy levels were observed: tetraploid (\( \overline x = {1}.{56} {\text{pg}},{2}n = {4} \times = {4}0 \)), hexaploid (\( \overline x { = 2}.{33} {\text{pg}},{2}n = {6} \times = {6}0 \)), and octoploid (\( \overline {\text{x}} { = 3}.0{6} {\text{pg}},{2}n = {8} \times { = 8}0 \)). In the sampled areas, the tetraploid populations extended from the East North Central to the New England regions of the U.S., while the octoploid cytotypes were mostly distributed in the West North Central regions. Populations of the tetraploids and octoploids were found in close proximity in the West North Central (Iowa and Kansas) and the West South Central (Oklahoma) regions. The hexaploid cytotype was found in one mixed population (4x + 6x) occurring in Illinois. No statistically significant intraploidy genome size variation was found in the tetraploid populations, while significant intraploidy genome size variation was found in the octoploid populations. This study precisely defined the geographic distribution of cytotypes in prairie cordgrass throughout the different regions of the U.S. These results provide critical genome size and ploidy distribution information needed to design efficient breeding schemes for high yielding cultivars of prairie cordgrass with local adaption.


Cytogeographic distribution DNA content Flow cytometry Prairie cordgrass Spartina pectinata Bosc ex Link Polyploidy 


  1. Bao-Quan Hu AL, Xue WY, Chen L, Wang WX, Song WZ, Chen CB, Wang CG (2011) DNA methylation in genomes of several annual herbaceous and woody perennial plants of varying ploidy as detected by MSAP. Plant Mol Biol Rep 29:784–793CrossRefGoogle Scholar
  2. Bennett MD (1987) Variation in genomic form in plants and its ecological implications. New Phytol 106:177–200CrossRefGoogle Scholar
  3. Barkworth ME, Anderton LK, Capels KM, Long S, Piep (2007) Manual of grasses for North America. Utah State University Press, LoganGoogle Scholar
  4. Boe A, Lee DK (2007) Genetic variation for biomass production in prairie cordgrass and switchgrass. Crop Sci 47:929–934CrossRefGoogle Scholar
  5. Boe A, Owens V, Gonzalez-Hermandez J, Stein J, Lee DK, Koo BC (2009) Morphology and biomass production of prairie cordgrass on marginal lands. GCB Bioenergy 1:240–250CrossRefGoogle Scholar
  6. Bonilla-Warford CM, Zedler JB (2002) Potential for using native plant species in stormwater wetlands. Environ Manage 29:385–394PubMedCrossRefGoogle Scholar
  7. Carvalho A, Polanco C, Lima-Brito J, Guedes-Pinto H (2010) Differential rRNA gene expression in hexaploid wheat related to NOR methylation. Plant Mol Biol Rep 28:403–412CrossRefGoogle Scholar
  8. Church GL (1940) Cytotaxonomic studies in the Graminea Spartina, Andropogon and Panicum. Am J Bot 27:263–271CrossRefGoogle Scholar
  9. Cires E, Cuesta C, Angeles Revilla M, Fernández Prieto JA (2010) Intraspecific genome size variation and morphological differentiation of Ranunculus parnassifolius (Ranunculaceae), an Alpine–Pyrenean–Cantabrian polyploid group. J Linn Soc Bot 101:251–271CrossRefGoogle Scholar
  10. Dolezel J, Bartoš J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry 51:127–128PubMedCrossRefGoogle Scholar
  11. Gonzalez-Hernandez JL, Sarath G, Stein JM, Owens V, Gedye K, Boe A (2009) A multiple species approach to biomass production from native herbaceous perennial feedstocks. In Vitro Cell Dev Biol Plant 45:267–281CrossRefGoogle Scholar
  12. Hitchcock AS (1950) Manual of the grasses of the United States. US Gov, Print Office, Washington, DCGoogle Scholar
  13. Huff Kao R (2008) Origins and widespread distribution of co-existing polyploids in Arnica cordifolia (Asteraceae). Ann Bot 101:145–152Google Scholar
  14. Husband BC, Schemske DW (1998) Cytotype distribution at a diploid–tetraploid contact zone in Chamerion (Epilobium) angustifolium (Onagraceae). Am J Bot 85:1688–1694PubMedCrossRefGoogle Scholar
  15. Jersàkovà J, Castro S, Sonk N, Milchreit K, Schödelbauerovà I, Tolashc T, Dötterl S (2010) Absence of pollinator-mediated premating barriers in mixed-ploidy populations of Gymnadenia conopsea s.l. (Orchidaceae). Evol Ecol 24:1199–1218CrossRefGoogle Scholar
  16. Kim S, Rayburn AL, Lee DK (2010) Genome size and chromosome analyses in prairie cordgrass. Crop Sci 50:2277–2282CrossRefGoogle Scholar
  17. Kim S, Rayburn AL, Voigt T, Parrish A, Lee DK (2011) Salinity effects on germination and plant growth of prairie cordgrass and switchgrass Bioen Res. doi: 10.1007/s12155-011-9145-3
  18. Kong F, Mai S, Jiang J, Wang J, Fang X, Wang Y (2011) Proteomic changes in newly synthesized Brassica napus allotetraploids and their early generations. Plant Mol Bio Rep 29:927–935CrossRefGoogle Scholar
  19. Krahulcová A, Krahulec F (2000) Offspring diversity in Hieracium subgen. Pilosella (Asteraceae): new cytotypes from hybridization experiments and from open pollination. Fragm Flor Geobot 45:239–255Google Scholar
  20. Leitch IJ, Bennett MD (2004) Genome downsizing in polyploidy plants. J Linn Soc Bot 82:651–663CrossRefGoogle Scholar
  21. Levin DA (2002) The role of chromosomal change in plant evolution. Oxford University Press, OxfordGoogle Scholar
  22. Long SP, Incoll LD, Woolhouse HW (1975) C4 photosynthesis in plants from cool temperate regions, with particular reference to Spartina townsendii. Nature 257:622–624CrossRefGoogle Scholar
  23. Marchant CJ (1968a) Evolution in Spartina (Gramineae): II. Chromosomes, basic relationships and the problem of S. x townsendii agg. J Linn Soc Bot 60:381–410CrossRefGoogle Scholar
  24. Marchant CJ (1968b) Evolution in Spartina (Gramineae): III. Species chromosome numbers and their taxonomic significance. J Linn Soc Bot 60:411–417CrossRefGoogle Scholar
  25. Marhold K, Kudoh H, Pak JH, Watanabe K, Spaniel S, Lihova J (2010) Cytotype diversity and genome size variation in eastern Asian polyploid Cardamine (Brassicaceae) species. Ann Bot 105:249–264PubMedCrossRefGoogle Scholar
  26. Michaelson MJ, Price HJ, Ellison JR, Johnston JS (1991) Comparison of plant DNA contents determined by Feulgen microspectrophotometry and laser flow cytometry. Am J Bot 78:183–188CrossRefGoogle Scholar
  27. Mobberley DG (1956) Taxonomy and distribution of the genus Spartina. Iowa St Coll J Sci 30:471–574Google Scholar
  28. Montemayor MB, Price JS, Rochefort L, Boudreau S (2008) Temporal variations and spatial patterns in saline and waterlogged peat fields: 1. survival and growth of salt marsh graminoids. Environ Exp Bot 62:333–342CrossRefGoogle Scholar
  29. Mosquin T, Small E (1971) An example of parallel evolution in Epilobium (Onagraceae). Evolution 25:678–682CrossRefGoogle Scholar
  30. Potter L, Bingham MJ, Baker MG, Long SP (1995) The potential of two perennial C4 grasses and a perennial C4 sedge as ligno-cellulosic fuel crops in N.W. Europe: crop establishment and yields in E. England. Ann Bot 76:513–520CrossRefGoogle Scholar
  31. Rayburn AL, McCloskey R, Tatum TC, Bollero GA, Jeschke MR, Tranel PJ (2005) Genome size analysis of weedy Amaranthus species. Crop Sci 45:2557–2562CrossRefGoogle Scholar
  32. Rayburn AL, Crawford J, Rayburn CM, Juvik JA (2009) Genome size of three Miscanthus species. Plant Mol Biol Rep 27:184–188CrossRefGoogle Scholar
  33. Reeder JR (1977) Chromosome numbers in western grasses. Am J Bot 64:102–110CrossRefGoogle Scholar
  34. Shilman R, Brand Y, Brand A, Hedvat I, Hovav R (2011) Identification and molecular characterization of homeologous ∆9-stearoyl acyl carrier protein desturase 3 genes from the allotetraploid peanut (Arachis hypogaea). Plant Mol Bio Rep 29:232–241CrossRefGoogle Scholar
  35. Skinner RH, Zobel RW, Van der Grinten M, Skaradek W (2009) Evaluation of native warm-season grass cultivars for riparian zones. J Soil Water Conserv 64:413–422CrossRefGoogle Scholar
  36. Stubbendieck J, Hatch SL, Kjar KJ (1982) North American range plants, 2nd edn. University Nebraska Press, LincolnGoogle Scholar
  37. Suda J, Krahulcova A, Travnicek P, Rosenbaumova R, Peckert T, Krahulec F (2007a) Genome size variation and species relationships in Hieracium sub-genus Pilosella (Asteraceae) as inferred by flow cytometry. Ann Bot 100:1323–1335PubMedCrossRefGoogle Scholar
  38. Suda J, Weiss-Schneeweiss H, Tribsch A, Schneeweiss GM, Trávníček P, Schönswetter P (2007b) Complex distribution patterns of di-, tetra- and hexaploid cytotypes in the European high mountain plant Senecio carniolicus Willd. (Asteraceae). Am J Bot 94(8):1391–1401PubMedCrossRefGoogle Scholar
  39. Tràvnícek P, Kuàtovà B, Curn V, Rauchovà J, Krajníkovà E, Jersàkovà J, Suda J (2011) Remarkable coexistence of multiple cytotypes of the Gymmadenia conopsea aggregate (the fragrant orchid): evidence form flow cytometry. Ann Bot 107:77–87PubMedCrossRefGoogle Scholar
  40. United States Department of Agriculture, Natural Resources Conservation Service (2002) Prairie cordgrass plant guide. Accessed 27 July 2010
  41. United States Census Bureau, Statistical Abstract of the United States (2011) (130th edn) Washington, DC. Accessed 9 Oct 2011
  42. Van Dijk P, Hartog M, Van Delden W (1992) Single cytotype areas in autopolyploid Plantago media L. Biol J Linn Soc 46:315–331CrossRefGoogle Scholar
  43. Weaver JE (1954) North American prairie. Johnsen, Lincoln, p 348Google Scholar

Copyright information

© Springer-Verlag (outside the USA) 2012

Authors and Affiliations

  • Sumin Kim
    • 1
  • A. Lane Rayburn
    • 1
  • Allen Parrish
    • 1
  • D. K. Lee
    • 1
  1. 1.Department of Crop SciencesUniversity of IllinoisUrbanaUSA

Personalised recommendations