Plant Molecular Biology Reporter

, Volume 30, Issue 4, pp 838–847

Identification of Putative Artemisia annua ABCG Transporter Unigenes Related to Artemisinin Yield Following Expression Analysis in Different Plant Tissues and in Response to Methyl Jasmonate and Abscisic Acid Treatments

  • Ling Zhang
  • Xu Lu
  • Qian Shen
  • Yunfei Chen
  • Tao Wang
  • Fangyuan Zhang
  • Shaoyan Wu
  • Weimin Jiang
  • Pin Liu
  • Lida Zhang
  • Yueyue Wang
  • Kexuan Tang
Article

Abstract

Artemisinin has attracted interest due to its medicinal value in treating malaria and its potential for use against certain cancers and viral diseases. Trichome density and capacity determine artemisinin content in Artemisia annua plants. Thus, the ATP-binding cassette transporter G (ABCG) subfamily involved in trichome cuticle development may also influence artemisinin accumulation. In this study, putative A. annua ABC transporter unigenes were identified and classified from the unigene sequences up to date in the National Center for Biotechnology Information database, and nine putative A. annua ABCG transporter unigenes that may be involved in cuticle development were selected for expression analyses. Two of them, AaABCG6 and AaABCG7, showed parallel expression pattern as two artemisinin biosynthesis-specific genes (amorpha-4, 11-diene synthase and a cytochrome P450-dependent hydroxylase, CYP71AV1) in different tissues and different leaf development stages and also showed similar induction in the plants after methyl jasmonate or abscisic acid treatments. Identification of these putative A. annua ABCG transporter unigenes could provide the basis for cloning of the full-length genes and further functional investigation to find the artemisinin relevant transporters, which could be used for improving artemisinin yield in both A. annua plants and heterologous systems using transgenic technology.

Keywords

ABCG transporter Artemisia annua Artemisinin ADS CYP71AV1 Trichome cuticle 

References

  1. Arsenault PR, Vail D, Wobbe KK, Erickson K, Weathers PJ (2010) Reproductive development modulates gene expression and metabolite levels with possible feedback inhibition of artemisinin in Artemisia annua. Plant Physiol 154:958–968PubMedCrossRefGoogle Scholar
  2. Arsenault PR, Wobbe KK, Weathers PJ (2008) Recent advances in artemisinin production through heterologous expression. Curr Med Chem 15:2886–2896PubMedCrossRefGoogle Scholar
  3. Bird D, Beisson F, Brigham A, Shin J, Greer S, Jetter R, Kunst L, Wu X, Yephremov A, Samuels L (2007) Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion. Plant J 52:485–498PubMedCrossRefGoogle Scholar
  4. Brown GD, Sy L-K (2004) In vivo transformations of dihydroartemisinic acid in Artemisia annua plants. Tetrahedron 60:1139–1159CrossRefGoogle Scholar
  5. Brown GD, Sy L-K (2007) In vivo transformations of artemisinic acid in Artemisia annua plants. Tetrahedron 63:9548–9566CrossRefGoogle Scholar
  6. Campbell EJ, Schenk PM, Kazan K, Penninckx IAMA, Anderson JP, Maclean DJ, Cammue BPA, Ebert PR, Manners JM (2003) Pathogen-responsive expression of a putative ATP-binding cassette transporter gene conferring resistance to the diterpenoid sclareol is regulated by multiple defense signaling pathways in Arabidopsis. Plant Physiol 133:1272–1284PubMedCrossRefGoogle Scholar
  7. Chang MCY, Eachus RA, Trieu W, Ro D-K, Keasling JD (2007) Engineering Escherichia coli for production of functionalized terpenoids using plant p450s. Nat Chem Biol 3:274–277PubMedCrossRefGoogle Scholar
  8. Covello PS (2008) Making artemisinin. Phytochemistry 69:2881–2885PubMedCrossRefGoogle Scholar
  9. Dai X, Wang G, Yang DS, Tang Y, Broun P, Marks MD, Sumner LW, Dixon RA, Zhao PX (2010) Trichome: a comparative omics database for plant trichomes. Plant Physiol 152:44–54PubMedCrossRefGoogle Scholar
  10. Demetriou K, Kapazoglou A, Bladenopoulos K, Tsaftaris AS (2010) Epigenetic chromatin modifiers in barley: II. Characterization and expression analysis of the HDA1 family of barley histone deacetylases during development and in response to jasmonic acid. Plant Mol Biol Rep 28:9–21CrossRefGoogle Scholar
  11. Duke M, Paul R, Elsohly H, Sturtz G, Duke S (1994) Localization of artemisinin and artemisitene in foliar tissues of glanded and glandless biotypes of Artemisia annua L. Int J Plant Sci 155:365–372CrossRefGoogle Scholar
  12. Efferth T (2007) Willmar Schwabe Award 2006: antiplasmodial and antitumor activity of artemisinin—from bench to bedside. Planta Med 73:299–309PubMedCrossRefGoogle Scholar
  13. Efferth T, Romero MR, Wolf DG, Stamminger T, Marin JJG, Marschall M (2008) The antiviral activities of artemisinin and artesunate. Clin Infect Dis 47:804–811PubMedCrossRefGoogle Scholar
  14. Graham IA, Besser K, Blumer S, Branigan CA, Czechowski T, Elias L, Guterman I, Harvey D, Isaac PG, Khan AM, Larson TR, Li Y, Pawson T, Penfield T, Rae AM, Rathbone DA, Reid S, Ross J, Smallwood MF, Segura V, Townsend T, Vyas D, Winzer T, Bowles D (2010) The genetic map of Artemisia annua L. identifies loci affecting yield of the antimalarial drug artemisinin. Science 327:328–331PubMedCrossRefGoogle Scholar
  15. Jasiński M, Stukkens Y, Degand H, Purnelle B, Marchand-Brynaert J, Boutry M (2001) A plant plasma membrane ATP binding cassette-type transporter is involved in antifungal terpenoid secretion. Plant Cell 13:1095–1107PubMedGoogle Scholar
  16. Kim D-W, Kim RN, Choi S-H, Kim D-W, Nam S-H, Choi H-S, Koh HD, Kim A, Chae S-H, Ahn JC, Kang A, Park H-S (2011) EST analysis predicts putatively causative genes underlying the pharmaceutical application of Glycyrrhiza uralensis Fisch. Plant Mol Biol Rep 29:814–824CrossRefGoogle Scholar
  17. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(t)) method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  18. Lommen WJM, Elzinga S, Verstappen FWA, Bouwmeester HJ (2007) Artemisinin and sesquiterpene precursors in dead and green leaves of Artemisia annua L. crops. Planta Med 73:1133–1139PubMedCrossRefGoogle Scholar
  19. Lommen WJM, Schenk E, Bouwmeester HJ, Verstappen FWA (2006) Trichome dynamics and artemisinin accumulation during development and senescence of Artemisia annua leaves. Planta Med 72:336–345PubMedCrossRefGoogle Scholar
  20. Lu X, Lin X, Shen Q, Zhang F, Wang Y, Chen Y, Wang T, Wu S, Tang K (2011) Characterization of the jasmonate biosynthetic gene allene oxide cyclase in Artemisia annua L., source of the antimalarial drug artemisinin. Plant Mol Biol Rep 29:489–497CrossRefGoogle Scholar
  21. Maes L, Van Nieuwerburgh FCW, Zhang Y, Reed DW, Pollier J, Vande Casteele SRF, Inzé D, Covello PS, Deforce DLD, Goossens A (2010) Dissection of the phytohormonal regulation of trichome formation and biosynthesis of the antimalarial compound artemisinin in Artemisia annua plants. New Phytol 189:176–189PubMedCrossRefGoogle Scholar
  22. Mercke P, Bengtsson M, Bouwmeester HJ, Posthumus MA, Brodelius PE (2000) Molecular cloning, expression, and characterization of amorpha-4,11-diene synthase, a key enzyme of artemisinin biosynthesis in Artemisia annua L. Arch Biochem Biophys 381:173–180PubMedCrossRefGoogle Scholar
  23. Milhous WK, Weina PJ (2010) Plant science. The botanical solution for malaria Science 327:279–280Google Scholar
  24. Oksman-Caldentey K-M, Inzé D (2004) Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. Trends Plant Sci 9:433–440PubMedCrossRefGoogle Scholar
  25. Olofsson L, Engström A, Lundgren A, Brodelius PE (2011) Relative expression of genes of terpene metabolism in different tissues of Artemisia annua L. BMC Plant Biol 11:45. doi:10.1186/1471-2229-11-45 PubMedCrossRefGoogle Scholar
  26. Olsson ME, Olofsson LM, Lindahl A-L, Lundgren A, Brodelius M, Brodelius PE (2009) Localization of enzymes of artemisinin biosynthesis to the apical cells of glandular secretory trichomes of Artemisia annua L. Phytochemistry 70:1123–1128PubMedCrossRefGoogle Scholar
  27. Panikashvili D, Aharoni A (2008) ABC-type transporters and cuticle assembly: linking function to polarity in epidermis cells. Plant Signal Behav 3:806–809PubMedCrossRefGoogle Scholar
  28. Panikashvili D, Shi JX, Bocobza S, Franke RB, Schreiber L, Aharoni A (2010) The Arabidopsis DSO/ABCG11 transporter affects cutin metabolism in reproductive organs and suberin in roots. Mol Plant 3:563–575PubMedCrossRefGoogle Scholar
  29. Panikashvili D, Shi JX, Schreiber L, Aharoni A (2011) The Arabidopsis ABCG13 transporter is required for flower cuticle secretion and patterning of the petal epidermis. New Phytol 190(1):113–124. doi:10.1111/j.1469-8137.2010.03608.x CrossRefGoogle Scholar
  30. Pighin JA (2004) Plant cuticular lipid export requires an ABC transporter. Science 306:702–704PubMedCrossRefGoogle Scholar
  31. Rea PA (2007) Plant ATP-binding cassette transporters. Annu Rev Plant Biol 58:347–375PubMedCrossRefGoogle Scholar
  32. Ro D-K, Ouellet M, Paradise EM, Burd H, Eng D, Paddon CJ, Newman JD, Keasling JD (2008) Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid. BMC Biotechnol 8:83. doi:10.1186/1472-6750-8-83 PubMedCrossRefGoogle Scholar
  33. Ro D-K, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MCY, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943PubMedCrossRefGoogle Scholar
  34. Sánchez-Fernández R, Davies TG, Coleman JO, Rea PA (2001) The Arabidopsis thaliana ABC protein superfamily, a complete inventory. J Biol Chem 276:30231–44PubMedCrossRefGoogle Scholar
  35. Schramek N, Wang H, Römisch-Margl W, Keil B, Radykewicz T, Winzenhörlein B, Beerhues L, Bacher A, Rohdich F, Gershenzon J, Liu B, Eisenreich W (2010) Artemisinin biosynthesis in growing plants of Artemisia annua. A 13CO2 study. Phytochemistry 71:179–187PubMedCrossRefGoogle Scholar
  36. Teoh KH, Polichuk DR, Reed DW, Covello PS (2009) Molecular cloning of an aldehyde dehydrogenase implicated in artemisinin biosynthesis in Artemisia annua. Botany 87:635–642CrossRefGoogle Scholar
  37. Teoh KH, Polichuk DR, Reed DW, Nowak G, Covello PS (2006) Artemisia annua L. (asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome p450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin. FEBS Lett 580:1411–1416PubMedCrossRefGoogle Scholar
  38. Tripathy MK, Tyagi W, Goswami M, Kaul T, Singla-Pareek SL, Deswal R, Reddy MK, Sopory SK (2011) Characterization and functional validation of tobacco PLC Delta for abiotic stress tolerance. Plant Mol Biol Rep. doi:10.1007/s11105-011-0360-z
  39. Verrier PJ, Bird D, Burla B, Dassa E, Forestier C, Geisler M, Klein M, Kolukisaoglu U, Lee Y, Martinoia E, Murphy A, Rea PA, Samuels L, Schulz B, Spalding EJ, Yazaki K, Theodoulou FL (2008) Plant ABC proteins—a unified nomenclature and updated inventory. Trends Plant Sci 13:151–159PubMedCrossRefGoogle Scholar
  40. Wallaart T, van Uden W, Lubberink H, Woerdenbag H, Pras N, Quax W (1999) Isolation and identification of dihydroartemisinic acid from Artemisia annua and its possible role in the biosynthesis of artemisinin. J Nat Prod 62:430–433PubMedCrossRefGoogle Scholar
  41. Wallaart TE, Bouwmeester HJ, Hille J, Poppinga L, Maijers NC (2001) Amorpha-4,11-diene synthase: cloning and functional expression of a key enzyme in the biosynthetic pathway of the novel antimalarial drug artemisinin. Planta 212:460–465PubMedCrossRefGoogle Scholar
  42. Wang W-K, Liu C-C, Chiang T-Y, Chen M-T, Chou C-H, Yeh C-H (2011) Characterization of expressed sequence tags from flower buds of alpine Lilium formosanum using a subtractive cdna library. Plant Mol Biol Rep 29:88–97CrossRefGoogle Scholar
  43. Yazaki K (2005) Transporters of secondary metabolites. Curr Opin Plant Biol 8:301–307PubMedCrossRefGoogle Scholar
  44. Yazaki K (2006) ABC transporters involved in the transport of plant secondary metabolites. FEBS Lett 580:1183–1191PubMedCrossRefGoogle Scholar
  45. Zambounis AG, Kalamaki MS, Tani EE, Paplomatas EJ, Tsaftaris AS (2011) Expression analysis of defense-related genes in cotton (Gossypium hirsutum) after Fusarium oxysporum f. sp. vasinfectum infection and following chemical elicitation using a salicylic acid analog and methyl jasmonate. Plant Mol Biol Rep doi:. doi:10.1007/s11105-011-0335-0
  46. Zeng Q, Qiu F, Yuan L (2008) Production of artemisinin by genetically-modified microbes. Biotechnol Lett 30:581–592PubMedCrossRefGoogle Scholar
  47. Zhang D, Hu C, Ouyang Y, Yao J (2011a) Construction of a full-length cDNA library and analysis of expressed sequence tags from inflorescence of apomictic sabaigrass (Eulaliopsis binata). Plant Mol Biol Rep. doi:10.1007/s11105-011-0316-3
  48. Zhang H, Jin J, Tang L, Zhao Y, Gu X, Gao G, Luo J (2011b) Planttfdb 2.0: update and improvement of the comprehensive plant transcription factor database. Nucleic Acids Res 39:D1114–1117PubMedCrossRefGoogle Scholar
  49. Zhang L, Jing F, Li F, Li M, Wang Y, Wang G, Sun X, Tang K (2009) Development of transgenic Artemisia annua (Chinese wormwood) plants with an enhanced content of artemisinin, an effective anti-malarial drug, by hairpin-RNA-mediated gene silencing. Biotechnol Appl Biochem 52:199–207PubMedCrossRefGoogle Scholar
  50. Zhang Y, Teoh KH, Reed DW, Maes L, Goossens A, Olson DJH, Ross ARS, Covello PS (2008) The molecular cloning of artemisinic aldehyde delta11(13) reductase and its role in glandular trichome-dependent biosynthesis of artemisinin in Artemisia annua. J Biol Chem 283:21501–21508PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Ling Zhang
    • 1
  • Xu Lu
    • 1
  • Qian Shen
    • 1
  • Yunfei Chen
    • 1
  • Tao Wang
    • 1
  • Fangyuan Zhang
    • 1
  • Shaoyan Wu
    • 1
  • Weimin Jiang
    • 1
  • Pin Liu
    • 1
  • Lida Zhang
    • 1
  • Yueyue Wang
    • 1
  • Kexuan Tang
    • 1
  1. 1.Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations