Plant Molecular Biology Reporter

, Volume 30, Issue 4, pp 848–859

Genome-wide Identification and Characterization of a Dehydrin Gene Family in Poplar (Populus trichocarpa)

  • Chang-Cai Liu
  • Chun-Ming Li
  • Bao-Guang Liu
  • Su-Jie Ge
  • Xiu-Mei Dong
  • Wei Li
  • Hang-Yong Zhu
  • Bai-Chen Wang
  • Chuan-Ping Yang
Original Paper

Abstract

Dehydrins (DHNs) define a complex group of stress inducible proteins characterized by the presence of one or more lysine-rich motifs. DHNs are present in multiple copies in the genome of plant species. Although genome-wide analysis of DHNs composition and chromosomal distribution has been conducted in herbaceous species, it remains unexplored in woody plants. Here, we report on the identification of ten genes encoding eleven putative DHN polypeptides in Populus. We document that DHN genes occur as duplicated blocks distributed over seven of the 19 poplar chromosomes likely as a result of segmental and tandem duplication events. Based on conserved motifs, poplar DHNs were assigned to four subgroups with the Kn subgroup being the most frequent. One putative DHN polypeptide (PtrDHN-10) with a SKS arrangement could originate from a recombination between SKn and KnS genes. In silico analysis of microarray data showed that in unstressed poplar, DHN genes are expressed in all vegetative tissues except for mature leaves. This exhaustive survey of DHN genes in poplar provides important information that will assist future studies on their functional role in poplar.

Keywords

Populus LEA Dehydrins Cold stress Woody plants Cellular dehydration 

Abbreviations

LEA

Late embryogenesis abundant

DHN

Dehydrin

LGs

Linkage groups

Supplementary material

11105_2011_395_MOESM1_ESM.doc (5.3 mb)
ESM 1(DOC 5446 kb)

References

  1. Abdel-Haleem H (2007) The origins of genome architecture. J Hered 98(6):633–634CrossRefGoogle Scholar
  2. Allagulova C, Gimalov F, Shakirova F, Vakhitov V (2003) The plant dehydrins: structure and putative functions. Biochemistry (Mosc) 68(9):945–951CrossRefGoogle Scholar
  3. Alsheikh MK, Svensson JT, Randall SK (2005) Phosphorylation regulated ion-binding is a property shared by the acidic subclass dehydrins. Plant Cell Environ 28(9):1114–1122CrossRefGoogle Scholar
  4. Bae EK, Lee H, Lee JS, Noh EW (2009) Differential expression of a poplar SK2-type dehydrin gene in response to various stresses. BMB Rep 42:439–443PubMedCrossRefGoogle Scholar
  5. Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. In: Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology. Menlo Park, California, AAAI Press, pp 28–36Google Scholar
  6. Bailey TL, Williams N, Misleh C, Li WW (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34(suppl 2):W369–W373PubMedCrossRefGoogle Scholar
  7. Barakat A, Bagniewska-Zadworna A, Choi A, Plakkat U, DiLoreto DS, Yellanki P, Carlson JE (2009) The cinnamyl alcohol dehydrogenase gene family in Populus: phylogeny, organization, and expression. BMC Plant Biol 9(1):26PubMedCrossRefGoogle Scholar
  8. Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias A (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148(1):6–24PubMedCrossRefGoogle Scholar
  9. Caruso A, Morabito D, Delmotte F, Kahlem G, Carpin S (2002) Dehydrin induction during drought and osmotic stress in Populus. Plant Physiol Biochem 40(12):1033–1042CrossRefGoogle Scholar
  10. Choi DW, Zhu B, Close T (1999) The barley (Hordeum vulgare L.) dehydrin multigene family: sequences, allele types, chromosome assignments, and expression characteristics of 11 Dhn genes of cv Dicktoo. Theor Appl Genet 98(8):1234–1247CrossRefGoogle Scholar
  11. Close T (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97(4):795–803CrossRefGoogle Scholar
  12. Close T (1997) Dehydrins: a commonalty in the response of plants to dehydration and low temperature. Physiol Plant 100(2):291–296CrossRefGoogle Scholar
  13. de Hoon M, Imoto S, Nolan J, Miyano S (2004) Open source clustering software. Bioinformatics (Oxford, England) 20(9):1453–1454CrossRefGoogle Scholar
  14. Eddy SR (2009) A new generation of homology search tools based on probabilistic inference. Genome Inform 23(1):205–211PubMedCrossRefGoogle Scholar
  15. Filichkin SA, Priest HD, Givan SA, Shen R, Bryant DW, Fox SE, Wong WK, Mockler TC (2010) Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res 20(1):45–58PubMedCrossRefGoogle Scholar
  16. Finn R, Mistry J, Schuster-Bockler B, Griffiths-Jones S, Hollich V, Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R (2006) Pfam: clans, web tools and services. Nucleic Acids Res 34(Database Issue):D247–D251PubMedCrossRefGoogle Scholar
  17. Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K (2010) The Pfam protein families database. Nucleic Acids Res 38(Database issue):D211–D222PubMedCrossRefGoogle Scholar
  18. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In: vol 41. Nucleic Acids Symposium Series, pp 95–98Google Scholar
  19. HongXia X, JunWei C, Ming X (2009) The role of dehydrin in plant response to cold stress. Acta Botanica Boreali-Occidentalia Sinica 29(1):199–206Google Scholar
  20. Hu R, Qi G, Kong Y, Kong D, Gao Q, Zhou G (2010) Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa. BMC Plant Biol 10(1):145PubMedCrossRefGoogle Scholar
  21. Hundertmark M, Hincha DK (2008) LEA (Late Embryogenesis Abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9(1):118PubMedCrossRefGoogle Scholar
  22. Iida K, Seki M, Sakurai T, Satou M, Akiyama K, Toyoda T, Konagaya A, Shinozaki K (2004) Genome-wide analysis of alternative pre-mRNA splicing in Arabidopsis thaliana based on full-length cDNA sequences. Nucleic Acids Res 32(17):5096–5103PubMedCrossRefGoogle Scholar
  23. Kalluri UC, DiFazio SP, Brunner AM, Tuskan GA (2007) Genome-wide analysis of Aux/IAA and ARF gene families in Populus trichocarpa. BMC Plant Biol 7(1):59PubMedCrossRefGoogle Scholar
  24. Kaye C, Neven L, Hofig A, Li QB, Haskell D, Guy C (1998) Characterization of a gene for spinach CAP160 and expression of two spinach cold-acclimation proteins in tobacco. Plant Physiol 116(4):1367–1377PubMedCrossRefGoogle Scholar
  25. Kosova K, Vitamvas P, Prásil I (2007) The role of dehydrins in plant response to cold. Biol Plant 51(4):601–617CrossRefGoogle Scholar
  26. Pruitt KD, Tatusova T, Maglott DR (2005) NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 33(suppl 1):D501–D504PubMedGoogle Scholar
  27. Pruitt KD, Tatusova T, Maglott DR (2006) NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 35(suppl 1):D61–D65PubMedGoogle Scholar
  28. Rinne PLH, Welling A, Schoot C (2010) Perennial life style of Populus: dormancy cycling and overwintering. Gen Genomics Populus 8(3):171–200CrossRefGoogle Scholar
  29. Rodriguez E, Svensson J, Malatrasi M, Choi DW, Close T (2005) Barley Dhn13 encodes a KS-type dehydrin with constitutive and stress responsive expression. Theor Appl Genet 110(5):852–858PubMedCrossRefGoogle Scholar
  30. Rohde A, Ruttink T, Hostyn V, Sterck L, Van Driessche K, Boerjan W (2007) Gene expression during the induction, maintenance, and release of dormancy in apical buds of poplar. J Exp Bot 58(15–16):4047–4060PubMedCrossRefGoogle Scholar
  31. Rorat T (2006) Plant dehydrins-tissue location, structure and function. Cell Mol Biol Lett 11(4):536–556PubMedCrossRefGoogle Scholar
  32. Saitou N, Nei M (1987) The Neighbor-joining Method: A New Method for Reconstructing Phylogenetic Trees. Mol Biol Evol 4(4):406–425Google Scholar
  33. Saldanha AJ (2004) Java Treeview-extensible visualization of microarray data. Bioinformatics 20(17):3246–3248PubMedCrossRefGoogle Scholar
  34. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol 28(10):2731–2739Google Scholar
  35. Tunnacliffe A, Wise M (2007) The continuing conundrum of the LEA proteins. Naturwissenschaften 94(10):791–812PubMedCrossRefGoogle Scholar
  36. Tunnacliffe A, Hincha D, Leprince O, Macherel D (2010) LEA proteins: versatility of form and function. Dormancy and Resistance in Harsh Environments: 91–108Google Scholar
  37. Tuskan G, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313(5793):1596–1604PubMedCrossRefGoogle Scholar
  38. Wang BB, Brendel V (2006) Genomewide comparative analysis of alternative splicing in plants. Proc Natl Acad Sci: 7175–7180Google Scholar
  39. Wang XS, Zhu HB, Jin GL, Liu HL, Wu WR, Zhu J (2007) Genome-scale identification and analysis of LEA genes in rice (Oryza sativa L.). Plant Sci 172(2):414–420CrossRefGoogle Scholar
  40. Wilkins O, Nahal H, Foong J, Provart NJ, Campbell MM (2009) Expansion and diversification of the Populus R2R3-MYB family of transcription factors. Plant Physiol 149(2):981–993PubMedCrossRefGoogle Scholar
  41. Yao K, Lockhart KM, Kalanack JJ (2005) Cloning of dehydrin coding sequences from Brassica juncea and Brassica napus and their low temperature-inducible expression in germinating seeds. Plant Physiol Biochem 43(1):83–89PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Chang-Cai Liu
    • 1
    • 2
  • Chun-Ming Li
    • 3
  • Bao-Guang Liu
    • 4
  • Su-Jie Ge
    • 1
  • Xiu-Mei Dong
    • 1
  • Wei Li
    • 5
  • Hang-Yong Zhu
    • 1
    • 6
  • Bai-Chen Wang
    • 1
  • Chuan-Ping Yang
    • 1
  1. 1.State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinPeople’s Republic of China
  2. 2.Laboratory for Chemical Defense and Microscale AnalysisZhijiangPeople’s Republic of China
  3. 3.Forestry Research Institution of Heilongjiang ProvinceHarbinPeople’s Republic of China
  4. 4.Forestry CollegeBeihua UniversityJilinPeople’s Republic of China
  5. 5.School of ForestryNortheast Forestry UniversityHarbinPeople’s Republic of China
  6. 6.Bureau of Garden and ParkQitaihePeople’s Republic of China

Personalised recommendations