Plant Molecular Biology Reporter

, Volume 30, Issue 2, pp 453–461

Determination S-Genotypes and Identification of Five Novel S-RNase Alleles in Wild Malus Species



Apple (Malus × domestica Borkh.) is a typical Rosaceae species that exhibits gametophytic self-incompatibility (GSI) controlled by polymorphic S-alleles. In this study, the S-alleles of wild Malus species were amplified, sequenced and compared using polymerase chain reaction (PCR) technology. 21 S-alleles were identified in 27 wild Malus species. The results indicated that the overwhelming majority of S-alleles between wild Malus species and cultivars shared identical sequences. Simultaneously, five new S alleles (designated S48S52) were identified in wild Malus species. There are the S48-RNase in M. angustifolia (Ation) Michaux, S49-RNase in M. orientalis Uglitzk. Ex Juz. and M. sylvestris (L.) Mill., S50-RNase in M. tschonoskii (Maxim.) C.K. Schneid. and M. sieversii (Ldb.) Roem., S51-RNase in M. komarovii (Sarg.) Rehd. and M. kansuensis (Batal.) C. K. Schneid., S52-RNase in M. manshurica (Maxim.) V. Komorov wild Malus species. Additionally, an S1-RNase was cloned in wild Malus prunifolia var. ringo, which have the same open reading frame as Malus × domestica cv. Fuji, but lacked whole intron.


Determination and identification S-Genotypes S-RNase Wild Malus species 

Supplementary material

11105_2011_345_MOESM1_ESM.doc (54 kb)
ESM 1(DOC 54 kb)


  1. Anderson MA, Cornish EC, Mau SL (1986) Cloning of cDNA for a stylar glycoprotein associated with expression of self-incompatibility in Nicotiana alata. Nature 321:38–44CrossRefGoogle Scholar
  2. Bernstein LB, Mount SM, Weiner AM (1983) Pseudogenes for human small nuclear RNA U3 appear to arise by integration of self-primed reverse transcripts of the RNA into new chromosomal sites. Cell 32:461–472PubMedCrossRefGoogle Scholar
  3. Boskovic R, Tobuut KR (1999) Correlation of stylar rybonuclease isoenzymes with incompatibility alleles in apple. Euphytica 107:29–43CrossRefGoogle Scholar
  4. Breathnach R, Chambon P (1981) Organization and expression of eucaryotic split genes coding for proteins. Annu Rev Biochem 50:349–383PubMedCrossRefGoogle Scholar
  5. Broothaerts W (2003) New findings in apple S-genotype analysis resolve previous confusion and request the re-numbering of some S-alleles. Theor Appl Genet 106:703–714PubMedGoogle Scholar
  6. Broothaerts W, Janssens GA, Proost P, Broekaert WF (1995) cDNA cloning and molecular analysis of two self-incompatibility alleles from apple. Plant Mol Biol 27:499–511PubMedCrossRefGoogle Scholar
  7. Broothaerts W, Verdoodt L, Keulemans J, Janssens GA, Broekaert WF (1996) The self-incompatibility gene in apple and determination of the S-genotype of apple cultivars by PCR. Acta Horticult 423:103–109Google Scholar
  8. Castillo C, Nakanishi T, Ishimizu T, Takasaki T, Norioka S, Saito T (2002) S-RNase based PCR-RFLP system for S-genotype assignment in Japanese pear. Acta Horticult 587:449–458Google Scholar
  9. Cavalier ST (1991) Intron phylogeny: a new hypothesis. Trends Genet 7:145–148Google Scholar
  10. Cheng JH, Zhang YG, Li TZ (2006) Quick SDS method for RNA isolation from apple and other plant tissues with room temperature centrifugation. Acta Horticult Sin 33:470Google Scholar
  11. Clark AG, Kao T-H (1991) Excess nonsynonymous substitution at shared polymorphic sites among self-incompatibility alleles of Solanaceae. Proc Natl Acad Sci 88:9823–9827PubMedCrossRefGoogle Scholar
  12. de Nettancourt D (2001) Incompatibility and incongruity in wild and cultivated plants. Springer, BerlinGoogle Scholar
  13. Derr LK (1998) The involvement of cellular recombination and repair genes in RNA-mediated recombination in Saccharomyces cerevisiae. Genetics 148:937–945PubMedGoogle Scholar
  14. Dreesen RSG, Vanholme BTM, Luyten K, Wynsberghe LV, Fazio G, Ruiz IR, Keulemans J (2010) Analysis of Malus S-RNase gene diversity based on a comparative study of old and modern apple cultivars and European wild apple. Mol Breeding 26(4):693–709CrossRefGoogle Scholar
  15. Gilbert W (1987) The exon theory of genes. Cold Spring Harb Symp Quant Bilology 52:901–905CrossRefGoogle Scholar
  16. Han ZH (1995) Germplasm resource of deciduous fruit trees [M]. China Agricultural Press, Beijing, pp 187–213 (in Chinese)Google Scholar
  17. Hankeln T, Friedl H, Ebersberger I, Martin J, Schmidt ER (1997) A variable intron distribution in globin genes of Chironomus: evidence for recent intron gain. Gene 205:151–160PubMedCrossRefGoogle Scholar
  18. Höfer M, Meister A (2010) Genome size variation in Malus species. J Bot. doi:10.1155/2010/480873
  19. Igic B, Kohn JR (2001) Evolutionary relationships among self-incompatibility RNases. Proc Natl Acad Sci 23:13167–13171CrossRefGoogle Scholar
  20. Ikeda K, Igic B, Ushijima K, Yamane H, Hauck NR, Nakano R, Sassa H, Iezzoni AF, Kohn JR, Tao R (2004) Primary structural features of the S haplotype-specific F-box protein, SFB, in Prunus. Sexual Plant Reprod 16:235–243CrossRefGoogle Scholar
  21. Ishimizu T, Endo T, Yamaguchi-Kabata Y, Makamura KT, Sakiyama F, Norioka S (1998a) Identification of regions in which positive selection may operate in S-RNase of Rosaceae: implication for S-allele-specific recognition sites in S-RNase. FEBS Lett 440:337–342PubMedCrossRefGoogle Scholar
  22. Ishimizu T, Shinkawa T, Sakiyama F, Norioka S (1998b) Primary structural features of Rosaceae S-RNases associated with gametophytic self-incompatibility. Plant Mol Biol 37:931–941PubMedCrossRefGoogle Scholar
  23. Ishimizu T, Inoe K, Shimonaka M, Saito T, Terai O, Norioka S (1999) PCR-based method for identifying the S-genotypes of Japanese pear cultivars. Theor Appl Genet 98:961–967CrossRefGoogle Scholar
  24. Iwamoto M, Maekawa M, Saito A, Higo H, Higo K (1998) Evolutionary relationship of plant catalase genes inferred from intron–exon structures: isozyme divergence after the separation of monocots and dicots. Theor Appl Genet 97:9–19CrossRefGoogle Scholar
  25. Janssens GA, Goderis IJ, Broekaert WF, Broothaerts W (1995) A molecular method for S-allele identification in apple based on allele-specific PCR. Theor Appl Genet 91:691–698CrossRefGoogle Scholar
  26. Kao TH, McCubbin AG (1997) Molecular and biochemical bases of gametophytic self-incompatibility in Solanaceae. Plant Physiol Biochem 35:171–176Google Scholar
  27. Kato S, Mukai Y (2004) Allelic diversity of S-RNase at the selfincompatibility locus in natural flowering cherry populations (Prunus lannesiana var speciosa). Heredity 92:249–256PubMedCrossRefGoogle Scholar
  28. Kawata Y, Sakiyama F, Tamaaoki H (1988) Amino-acid sequence of ribonuclease T2 from Aspergillus oryzae. Eur J Biochem 176:683–697PubMedCrossRefGoogle Scholar
  29. Kim H, Park J, Hirata Y, Nou I (2008) Molecular characterization of new S-RNases (‘S 31’ and ‘S 32’) in apple (Malus × domestica Borkh). J Plant Biol 3(31):202–208CrossRefGoogle Scholar
  30. Kitahara K, Matsumoto S (2002) Sequence of the S 10 cDNA from ‘McIntosh’ apple and a PCR-digestion identification method. HortScience 37:187–190Google Scholar
  31. Kitahara K, Soejima J, Komatsu H, Fukui H, Matsumoto S (2000) Complete sequences of the S-genes ‘S d -’ and ‘S h-RNase’ cDNA in apple. HortScience 35:712–715Google Scholar
  32. Lee HS, Huang S, Kao TH (1994) S proteins control rejection of incompatible pollen in Petunia inflata. Nature 367:560–563PubMedCrossRefGoogle Scholar
  33. Li YN (1989) Study on the genome center of apple and Malus. Acta Horticult Sin 16(2):101–108 (in Chinese)Google Scholar
  34. Long M, Rosenberg C (2000) Testing the ‘proto-splice sites’ model of intron origin: evidence from analysis of intron phase correlations. Mol Biol Evol 17:1789–1796PubMedGoogle Scholar
  35. Ma RC, Oliveira M (2002) Evolutionary analysis of S-RNase genes from Rosaceae species. Mol Genet Genomics 267:71–78PubMedCrossRefGoogle Scholar
  36. Malnoy M, Reynoird JR, Mourgues F, Cheureau E, Simoneau R (2001) A method for isolating total RNA from pear leaves. Plant Mol Biol Rep 19:69CrossRefGoogle Scholar
  37. Matityahu A, Stern RA, Schneider D, Goldway M (2005) Molecular identification of a new apple S-RNase — S29 — cloned from ‘Anna’, a low-chilling-requirement cultivar. HortScience 40(3):850–851Google Scholar
  38. Matsumoto S, Kitahara K (2000) Discovery of a new self-incompatibility allele in apple. HortScience 35:1329–1332Google Scholar
  39. Matsumoto S, Komori S, Kitahara K, Imazu S, Soejima J (1999a) S-genotypes of 15 apple cultivars and self-compatibility of ‘Megumi’. J Japan Soc Horticult Sci 68(2):236–241CrossRefGoogle Scholar
  40. Matsumoto S, Kitahara K, Komori S, Soejima J (1999b) A new S-allele in apple, ‘S g’, and its similarity to the ‘S f’ allele from Fuji. HortScience 34:708–710Google Scholar
  41. Matsumoto S, Hayashi S, Kitahara K, Soejima J (2001) Genomic DNA sequences encoding Malus × domestica Borkh. “Akane”, “Delicious” and Malus transitoria S-RNases. Mitochondrial DNA 12:381–383CrossRefGoogle Scholar
  42. Matton DP, Mau SL, Okamoto S, Clarke AE, Newbigin E (1995) The S locus of Nicotiana alata: genomic organization and sequence analysis of two S-RNase alleles. Plant Mol Biol 28:847–858PubMedCrossRefGoogle Scholar
  43. Matton D, Maes O, Laublin G, Xike Q, Bertrand C, Morse D, Cappadocia M (1997) Hypervariable domains of self-incompatibility RNases mediate allele-specific pollen recognition. Plant Cell 9:1757–1766PubMedCrossRefGoogle Scholar
  44. McClure BA, Haring V, Ebert PR, Anderson MA, Simpson RJ, Sakiyama F, Clarke AE (1989) Style self-incompatibility gene products of Nicotiana alata are ribonucleases. Nature 342:955–957PubMedCrossRefGoogle Scholar
  45. Murfett J, Atherton TL, Mou B, Gasser CS, McClure BA (1994) S-RNase expressed in transgenic Nicotiana causes S-allele-specific pollen rejection. Nature 367:563–566PubMedCrossRefGoogle Scholar
  46. Nunes MDS, Santos RAM, Ferreira SM, Viera J, Viera CP (2006) Variability patterns and positively selected sites at the gametophytic self incompatibility pollen SFB gene in a wild self-incompatible Prunus spinosa (Rosaceae) population. New Phytol 172:577–587PubMedCrossRefGoogle Scholar
  47. Porebski S, Bailey LG, Baum BR (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep 15(1):8–15CrossRefGoogle Scholar
  48. Rogers JH (1989) How were introns inserted into nuclear genes? Trends Genet 5:213–216PubMedCrossRefGoogle Scholar
  49. Roy SW, Gilbert W (2006) The evolution of spliceosomal introns: patterns, puzzles and progress. Nat Rev Genet 7(3):211–221PubMedGoogle Scholar
  50. Saba-El-Leil M, Rivard S, Morse D, Cappadocia M (1994) The S 11 and S 13 self-incompatibility alleles in Solanum chacoense Bitt are remarkably similar. Plant Mol Biol 24:571–583PubMedCrossRefGoogle Scholar
  51. Sassa H, Nishio T, Kowyama Y, Hirano H, Koba T, Ikehashi H (1996) Self-incompatibility (S) alleles of the Rosaceae encodes members of a distinct class of T2/S-ribonuclease superfamily. Mol Gen Genet 250:547–557PubMedGoogle Scholar
  52. Sharp PA (1985) On the origin of RNA splicing and introns. Cell 42:397–400PubMedCrossRefGoogle Scholar
  53. Steinbachs JE, Holsinger KE (2002) S-RNase mediated gametophytic self-incompatibility is ancestral in eudicots. Mol Biol Evol 19:825–829PubMedCrossRefGoogle Scholar
  54. Tamura M, Ushijima K, Sassa H, Hirano H, Tao R, Gradziel TM, Dandekar AM (2000) Identification of self-incompatibility genotypes of almond by allelic-specific PCR analysis. Theor Appl Genet 101:344–349CrossRefGoogle Scholar
  55. Tatum TC, Stepanovic S, Biradar DP, Rayburn AL, Korban SS (2005) Variation in nuclear DNA content in Malus species and cultivated apples. Genome 48:924–930PubMedCrossRefGoogle Scholar
  56. Ushijima K, Sassa H, Tao R, Yamane H, Dandekar AM, Gradziel TM, Hirano H (1998) Cloning and characterization of cDNAs encoding S-RNases from almond (Prunus dulcis): primary structural features and sequence diversity of the S-RNases in Rosaceae. Mol Gen Genet 260:261–268PubMedCrossRefGoogle Scholar
  57. Van Nerum I, Geerts M, Van Haute A, Keulemans J, Broothaerts W (2001) Re-examination of the self-incompatibility genotype of apple cultivars containing putative ‘new’ S-alleles. Theor Appl Genet 103:584–591CrossRefGoogle Scholar
  58. Vieira J, Fonseca NA, Vieira CP (2008) An S-RNase-based gametophytic selfincompatibility system evolved only once in Eudicots. J Mol Evol 67:179–190PubMedCrossRefGoogle Scholar
  59. Wang X, Hughes AL, Tsukamoto T, Ando T, Kao TH (2001) Evidence that intragenic recombination contributes to allelic diversity of the S-RNase gene at the self-incompatibility (S) locus in Petunia inflata. Plant Physiol 125:1012–1022PubMedCrossRefGoogle Scholar
  60. Xie RJ, Zhou J, Wang GY, Zhang SM, Chen L, Gao ZS (2011) Cultivar identification and genetic diversity of Chinese Bayberry (Myrica rubra) accessions based on fluorescent SSR markers. Plant Mol Biol Rep 29:554–562CrossRefGoogle Scholar
  61. Xue YB, Carpenter R, Dickinson H, Coen ES (1996) Origin of allelic diversity in Antirrhinum S locus RNases. Plant Cell 8:805–814PubMedCrossRefGoogle Scholar
  62. Yaegaki H, Shimada T, Moriguchi T, Hayama H, Haji T, Yamaguchi M (2001) Molecular characterization of S-RNase genes and S-genotypes in the Japanese apricot (Prunus mume Sieb. et Zucc.). Sexual Plant Reprod 13:251–257CrossRefGoogle Scholar
  63. Yamane H, Tao R, Sugiura A (1999) Identification and cDNA cloning for S-RNases in self-incompatible Japanese plum (Prunus salicina Lindl. cv. Sordum). Plant Biotechnol 16(5):389–396CrossRefGoogle Scholar
  64. Yamane H, Tao R, Mori H, Sugiura A (2003) Identification of a non-S RNase, a possible ancestral form of S-RNases, in Prunus. Mol Genet Genomics 269:90–100PubMedGoogle Scholar
  65. Zhu M, Zhang XM, Zhang KC, Jiang LJ, Zhang LM (2004) Development of a simple molecular marker specific for detecting the Self-compatible S 4” haplotype in sweet cherry (Prunus avium L.). Plant Mol Biol Rep 22:387–398CrossRefGoogle Scholar
  66. Zurek DM, Mou B, Beecher B, McClure B (1997) Exchanging domains between S-RNases from Nicotiana alata disrupts pollen recognition. Plant J 11:797–80PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Laboratory of Fruit Tree Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
  2. 2.Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
  3. 3.United Graduate School of Agricultural ScienceIwate UniversityMoriokaJapan

Personalised recommendations