Plant Molecular Biology Reporter

, Volume 29, Issue 2, pp 404–410 | Cite as

Inheritance of Flowering Time in Apricot (Prunus armeniaca L.) and Analysis of Linked Quantitative Trait Loci (QTLs) using Simple Sequence Repeat (SSR) Markers

  • José Antonio Campoy
  • David Ruiz
  • José Egea
  • David Jasper G. Rees
  • Jean Marc Celton
  • Pedro Martínez-Gómez


Time of flowering was studied during 3 years in a BC1 apricot progeny of 73 seedlings derived from a cross between the F1 selection “Z506-07” (“Orange Red” × “Currot”) and the Spanish cultivar “Currot”. Results indicated a quantitative inheritance of flowering time in apricot with an influence of juvenility and environmental conditions (chill accumulation) on the evaluation and expression of this trait. Genetic maps consisting of 11 linkage groups for both parents representing the eight chromosomes of apricot were developed using 46 apricot and peach simple sequence repeat (SSR-microsatellites) markers and were used for the identification of quantitative trait loci (QTL). QTL analysis for flowering time allowed the identification of one significant QTL on the linkage group 5 (G5) of “Z506-07”, and explaining most of the phenotypic variation. Two microsatellite loci (UDAp-423r and AMPA-105) were found to be tightly linked to this important agronomic trait. Finally, we discuss the stability of the QTL described during the 3 years of the study and the development of efficient marker-assisted selection strategies applied to apricot and other Prunus breeding programs.


Apricot Dormancy Flowering time Marker-assisted selection Microsatellites QTL 



Authors thank the support of the Deciduous Fruit Producers Trust (South Africa) and the THRIP program of the Department of Trade and Industry (South Africa). José A. Campoy is holder of a grant from the Spanish Ministry of Science and Innovation (Project reference AGL2004-04126-C02-01).


  1. Alburquerque N, García-Montiel F, Carrillo A, Burgos L (2008) Chilling and heat requirements of sweet cherry cultivars and the relationship between altitude and the probability of satisfying the chill requirements. Environ Exp Bot 64:162–170CrossRefGoogle Scholar
  2. Andrés MV, Durán JM (1999) Cold and heat requirements of the apricot (Prunus armeniaca L.) tree. J Hortic Sci Biotechnol 74:757–761Google Scholar
  3. Aranzana MJ, Cosson P, Dirlewanger E, Ascasibar J, Cipriani G, Arús P, Testolin R, Abbott A, King GJ, Iezzoni AF (2003) A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theor Appl Genet 106:819–825PubMedGoogle Scholar
  4. Arora R, Rowland LJ, Tanino K (2003) Induction and release of bud dormancy in woody perennials: a science comes of age. HortScience 38:911–921Google Scholar
  5. Arús P, Moreno-González J (1993) Marker-assisted selection. In: Hayward MD, Bosemark NO, Romagosa I (eds) Plant breeding. Principles and prospects. Chapman & Hall, London, pp 314–331Google Scholar
  6. Asins MJ, Mestre P, García JE, Dicenta F, Carbonell EA (1994) Genotype x environment interaction in QTL analysis of an intervarietal almond cross by means of genetic markers. Theor Appl Genet 89:358–364CrossRefGoogle Scholar
  7. Bailey CH, Cowgill W, Hough LF (1978) Estimate of chilling requirements of apricot selections. Acta Hortic 85:184–189Google Scholar
  8. Bourguiba H, Krichen L, Audergon JM, Khadari B, Trifi-Farah M (2010) Impact of mapped SSR markers on the genetic diversity of apricot (Prunus armeniaca L.) in Tunisia. Plant Mol Biol Rep 28:578–587CrossRefGoogle Scholar
  9. Campoy JA, Martínez-Gómez P, Ruiz D, Rees J, Celton JM (2010) Developing microsatellite multiplex and megaplex PCR systems for high throughput characterization of breeding progenies and linkage maps spanning the apricot genome. Plant Mol Biol Rep 28:560–568CrossRefGoogle Scholar
  10. Chaparro J, Beckman T (2008) Detection of vegetative bud dormancy QTL in peach. HortScience 43:1269Google Scholar
  11. Cipriani G, Lot G, Huang HG, Marrazzo MT, Peterlunger E, Testolin R (1999) AC/GT and AG/CT microsatellite repeats in peach (Prunus persica (L) Basch): isolation, characterization and cross-species amplification in Prunus. Theor Appl Genet 99:65–72CrossRefGoogle Scholar
  12. Couranjou J (1995) Genetic studies of 11 quantitative characters in apricot. Sci Hortic-Amsterdam 61:61–75CrossRefGoogle Scholar
  13. Couvillon GA, Erez A (1985) Influence of prolonged exposure to chilling temperatures on bud break and heat requirement for bloom of several fruit species. J Am Soc Hortic Sci 110:47–50Google Scholar
  14. Decroocq V, Foulongne M, Lambert P, Gall OL, Mantin C, Pascal T, Schurdi-Levraud T, Kervella J (2005) Analogues of virus resistance genes map to QTLs for resistance to sharka disease in Prunus davidiana. Mol Gen Genet 272:680–689Google Scholar
  15. Dicenta F, García JE, Carbonell EA (1993) Heritability of flowering, productivity and maturity in almond. J Hortic Sci 68:113–120Google Scholar
  16. Dirlewanger E, Crosson A, Tavaud P, Aranzana MJ, Poizat C, Zanetto A, Arús P, Laigret L (2002) Development of microsatellite markers in peach and their use in genetic diversity analysis in peach and sweet cherry. Theor Appl Genet 105:127–138PubMedCrossRefGoogle Scholar
  17. Dirlewanger E, Graziano E, Joobeur T, Garriga-Caldré F, Cosson P, Howad W, Arús P (2004) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci USA 101:9891–9896PubMedCrossRefGoogle Scholar
  18. Dondini L, Lain O, Geuna F, Banfi R, Gaiotti F, Tartarini S, Bassi D, Tesolin R (2007) Development of a new SSR-based linkage map in apricot and analysis of synteny with existing Prunus map. Tree Gen Gen 3:239–249CrossRefGoogle Scholar
  19. Doyle JJ, Doyle JL (1987) A rapid isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  20. Egea J, Ortega E, Martínez-Gómez P, Dicenta F (2003) Chilling and heat requirements of almond cultivars for flowering. Environ Exp Bot 50:79–85Google Scholar
  21. Fan S, Bielenberg DG, Zhebentyayeva TN, Reighard GL, Okie WR, Holland D, Abbott AG (2010) Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica). New Phytol 185:917–930PubMedCrossRefGoogle Scholar
  22. Foulongne M, Pascal T, Pfeiffer F, Kervella J (2003) QTLs for powdery mildew resistance in peach x P. davidiana crosses: consistency across generations and environments. Mol Breed 12:33–50CrossRefGoogle Scholar
  23. García MR, Asins MJ, Carbonell EA (2000) QTL analysis of yield and seed number in Citrus. Theor Appl Genet 101:487–493CrossRefGoogle Scholar
  24. Gupta PK, Balyan HS, Sharma PC, Ramesh B (1996) Microsatellites in plants: a new class of molecular markers. Curr Sci 70:45–54Google Scholar
  25. Hagen LS, Chaib J, Fad B, Decrocq V, Bouchet P, Lambert P, Audergon JM (2004) Genomic and cDNA microsatellite from apricot (Prunus armeniaca L.). Mol Ecol Notes 4:432–434CrossRefGoogle Scholar
  26. Hormaza JI (2002) Molecular characterization and similarity relationships among apricot genotypes using simple sequence repeats. Theor Appl Genet 104:321–328PubMedCrossRefGoogle Scholar
  27. Hurtado MA, Romero C, Vilanova S, Abbott AG, Llácer G, Badenes ML (2002) Genetic linkage maps of two apricot cultivars (Prunus armeniaca L.), and mapping of PPV (Sharka) resistance. Theor Appl Genet 105:182–191PubMedCrossRefGoogle Scholar
  28. Kenis K, Keulemans J, Davey MW (2008) Identification and stability of QTLs for fruit quality traits in apple. Tree Gen Gen 4:647–661CrossRefGoogle Scholar
  29. Lalli DA, Abbott AG, Zhebentyayeva TN, Badenes ML, Damsteegt V, Polak J, Krska B, Salava J (2008) A genetic linkage map for an apricot (Prunus armeniaca L.) BC1 population mapping plum pox virus resistance. Tree Gen Gen 4:481–493CrossRefGoogle Scholar
  30. Lambert P, Hagen LS, Arús P, Audergon JM (2004) Genetic linkage maps of two apricot cultivars (Prunus armeniaca L.) compared with the almond ‘Texas’ x peach ‘Earlygold’ reference map for Prunus. Theor Appl Genet 108:1120–1130PubMedCrossRefGoogle Scholar
  31. Lambert P, Dicenta F, Rubio M, Audergon JM (2007) QTL analysis of resistance to Sharka disease in the apricot (Prunus armeniaca L.) ‘Polonais’ x ‘Stark Early Orange’ F1 progeny. Tree Gen Gen 3:299–309CrossRefGoogle Scholar
  32. Messina R, Lain O, Marrazo T, Cipriano G, Testolin R (2004) New set of microsatellite loci isolated in apricot. Mol Ecol Notes 4:432–434CrossRefGoogle Scholar
  33. Okie WR, Blackburn (2008) Interaction of chill and heat in peach flower bud dormancy. HortScience 43:1161–1161Google Scholar
  34. Olukolu B, Trainin T, Fan S, Kole C, Bielenberg D, Reighard G, Abbott A, Holland D (2009) Genetic linkage mapping for molecular dissection of chilling requirement and budbreak in apricot (Prunus armeniaca L.). Genome 52:819–828PubMedCrossRefGoogle Scholar
  35. Quilot B, Wu BH, Kervella J, Génard M, Foulongne M, Moreau K (2004) QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P. davidiana. Theor Appl Genet 109:884–897PubMedCrossRefGoogle Scholar
  36. Quilot B, Kervella J, Génard M, Lescourret F (2005) Analysing the genetic control of peach fruit quality through an ecophysiological model combined with a QTL approach. J Exp Bot 56:3083–3092PubMedCrossRefGoogle Scholar
  37. Ruiz D, Campoy JA, Egea J (2007) Chilling and heat requirements of apricot cultivars for flowering. Environ Exp Bot 61:254–263CrossRefGoogle Scholar
  38. Sánchez-Pérez R, Ruiz D, Dicenta F, Egea J, Martínez-Gómez P (2005) Application of simple sequence repeat (SSR) markers in apricot breeding: molecular characterization, protection, and genetic relationships. Sci Hortic-Amsterdam 103:305–315CrossRefGoogle Scholar
  39. Sánchez-Pérez R, Howad W, Dicenta F, Arús P, Martínez-Gómez P (2007) Mapping major genes and quantitative trait loci controlling agronomic traits in almond. Plant Breed 126:310–318CrossRefGoogle Scholar
  40. Silva C, Garcia Mas J, Sánchez AM, Arús P, Oliveira MM (2005) Looking into flowering time in almond (Prunus dulcis (Mill) D.A. Webb): the candidate gene approach. Theor Appl Genet 110:959–968PubMedCrossRefGoogle Scholar
  41. Soriano JM, Vera-Ruiz EM, Vilanova S, Martínez-Calvo J, Llácer G, Badenes ML, Romero C (2008) Identification and mapping of a locus conferring plum pox virus resistance in two apricot-improved linkage maps. Tree Gen Gen 4:391–402CrossRefGoogle Scholar
  42. Sosinski B, Gannavarapu M, Hager LE, Beck LE, King GJ, Ryder CD, Rajapakse S, Baird WV, Ballard RE, Abbott AG (2000) Characterization of microsatellite markers in peach (Prunus persica (L) Basch). Theor Appl Genet 101:421–428CrossRefGoogle Scholar
  43. Tanksley SD, Young ND, Patterson AH, Bonierbale NW (1989) RFLP mapping in plant breeding: New tools for an old science. Biotechnology 7:257–264CrossRefGoogle Scholar
  44. Testolin R, Marrazo T, Cipriani G, Quarta R, Verde I, Dettori T, Pancaldi M, Sansavini S (2000) Microsatellite DNA in peach (Prunus persica L. Batsch) and it use in fingerprinting and testing the genetic origin of cultivars. Genome 43:512–520PubMedCrossRefGoogle Scholar
  45. Tzonev R, Erez A (2003) Inheritance of chilling requirement for dormancy completion in apricot vegetative buds. Acta Hortic 622:429–436Google Scholar
  46. Van Ooijen JW (2004) MapQTL® 5, Software for the mapping of quantitative trait loci in experimental populations. Kyazma BV, Wageningen, NetherlandsGoogle Scholar
  47. Vilanova S, Romero C, Abbott AG, Llácer G, Badenes ML (2003) An apricot F2 progeny linkage map based on SSR and AFLP markers, mapping plum pox virus resistance and self-incompatibility traits. Theor Appl Genet 107:239–247PubMedCrossRefGoogle Scholar
  48. Viti R, Andreini L, Ruiz D, Egea J, Bartolini S, Iacona C, Campoy JA (2010) Effect of climatic conditions on the overcoming of dormancy in apricot flower buds in two Mediterranean areas: Murcia (Spain) and Tuscany (Italy). Sci Hortic-Amsterdam 124:217–224CrossRefGoogle Scholar
  49. Weinberger JH (1944) Characteristics of the progeny of certain peach varieties. Proc Amer Soc Hort Sci 45:233–238Google Scholar
  50. Zhebentyayeva TN, Reighard GL, Gorina VM, Abbott AG (2003) Microsatellite (SSR) analysis for assessment of genetic variability in apricot. Theor Appl Genet 106:435–444PubMedGoogle Scholar
  51. Zhebentyayeva TN, Reighard GL, Lalli D, Gorina VM, Krska B, Abbott AG (2008) Origin of resistance to plum pox virus in apricot: what new AFLP and targeted SSR data analyses tell. Tree Gen Gen 4:403–417CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • José Antonio Campoy
    • 1
  • David Ruiz
    • 1
  • José Egea
    • 1
  • David Jasper G. Rees
    • 2
    • 3
  • Jean Marc Celton
    • 2
  • Pedro Martínez-Gómez
    • 1
  1. 1.Departamento de Mejora VegetalCEBAS-CSICEspinardoSpain
  2. 2.Department of BiotechnologyUniversity of the Western CapeBellvilleSouth Africa
  3. 3.Agricultural Research Council, Biotechnology PlatformOnderstepoortSouth Africa

Personalised recommendations