Plant Molecular Biology Reporter

, Volume 28, Issue 2, pp 285–291 | Cite as

Polymorphic Microsatellite Markers Transferable Across Capsicum Species

  • Ayse Gul Ince
  • Mehmet KaracaEmail author
  • Ahmet Naci Onus


Pepper (Capsicum annuum L.) is one of the most important crops in the family Solanaceae. However, the number of polymorphic molecular loci detected in this important crop is far behind that of other cultivated plant species. In the present study, a total of 45 microsatellite primer pairs were developed using Capsicum expressed sequence tags databases. Microsatellite primer pairs were tested using several species of Capsicum and several genera in the family Solanaceae including tomato, potato, eggplant, and tobacco. Results indicated that microsatellite primer pairs amplified genomic targets of C. annuum L., Capsicum baccatum L., Capsicum chacoense L., Capsicum chinense L., Capsicum frutescens L., and Capsicum pubescens Ruiz et Pavon, indicating species transferability within Capsicum. Further analyses revealed that amplicons of these primer pairs segregated 1:2:1 or 3:1 Mendelian fashions in 38 F2 individuals of pepper. It was also noted that markers derived from sequences containing dinucleotide repeats were generally more polymorphic at the intraspecific level than sequences containing trinucleotide repeats. All the microsatellite primer pairs developed in this study will be useful for marker-assisted selection and mapping studies in pepper.


EST-microsatellites Cross-amplification Touch-down PCR 



Expressed sequence tag


Simple sequence repeats


Touch-down polymerase chain reactions

TRA 1.5

Tandem Repeats Analyzer 1.5



This work was supported in part by the Scientific and Technological Research Council and Akdeniz University Coordination Unit of Scientific Research Projects. The authors thank two anonymous referees for contributing valuable information to this manuscript.


  1. Anonymous (2007) Food and Agriculture Organization of the United Nations. Available via FAOSTAT@fao.orgGoogle Scholar
  2. Bilgen M, Karaca M, Onus AN, Ince AG (2004) A software program combining sequence motif searches with keywords for finding repeats containing DNA sequences. Bioinformatics 20:3379–3386. doi: 10.1093/bioinformatics/bth410 CrossRefPubMedGoogle Scholar
  3. Cristancho M, Escobar C (2008) Transferability of SSR markers from related Uredinales species to the coffee rust Hemileia vastatrix. Genet Mol Res 7:1186–1192CrossRefPubMedGoogle Scholar
  4. Guo W, Wang W, Zhou B (2006) Cross-species transferability of G. arboreum-derived EST-SSRs in the diploid species of Gossypium. Theor Appl Genet 112:1573–1581. doi: 10.1007/s00122-006-0261-y CrossRefPubMedGoogle Scholar
  5. Ince AG, Karaca M (2009) The MAGi RNA extraction method: highly efficient and simple procedure for fresh and dry plant tissues. J Sci Food Agric 89:168–176. doi: 10.1002/jsfa.3428 CrossRefGoogle Scholar
  6. Ince AG, Karaca M, Bilgen M, Onus AN (2008) Digital differential display tools for mining microsatellite containing organism, organ and tissue. Plant Cell Tiss Organ Cult 94:281–290. doi: 10.1007/s11240-008-9372-2 CrossRefGoogle Scholar
  7. Ince AG, Karaca M, Onus AN (2009) Development and utilization of diagnostic DAMD-PCR markers for Capsicum accessions. Genet Resour Crop Evol 56:211–221. doi: 10.1007/s10722-008-9356-4 CrossRefGoogle Scholar
  8. Karaca M, Saha S, Jenkins JN, Zipf A, Kohel R, Stelly DM (2002) Simple sequence repeat (SSR) markers linked to the Ligon Lintless (Li1) mutant in cotton. J Hered 93:221–224CrossRefPubMedGoogle Scholar
  9. Karaca M, Bilgen M, Onus AN, Ince AG, Elmasulu SY (2005a) Exact tandem repeats analyzer (E-TRA) for DNA sequence mining. J Genet 84:49–54. doi: 10.1007/BF02715889 CrossRefPubMedGoogle Scholar
  10. Karaca M, Ince AG, Elmasulu SY, Onus AN, Turgut K (2005b) Coisolation of genomic and organelle DNAs from 15 genera and 31 species of plants. Anal Biochem 343:353–355. doi: 10.1016/j.ab.2005.03.021 CrossRefPubMedGoogle Scholar
  11. Ku HM, Vision T, Liu J, Tanksley SD (2000) Comparing sequenced segments of the tomato and Arabidopsis genomes: large-scale duplication followed by selective gene loss creates a network of synteny. Proc Natl Acad Sci 97:9121–9126. doi: 10.1073/pnas.160271297 CrossRefPubMedGoogle Scholar
  12. Lee HR, Bae IH, Park SW, Kim HJ, Min WK, Han JH, Kim KT, Kim BD (2009) Construction of an integrated pepper map using RFLP, SSR, CAPS, AFLP, WRKY, rRAMP, and BAC end sequences. Molecules and Cells 27:21–37. doi: 10.1007/s10059-009-0002-6 CrossRefPubMedGoogle Scholar
  13. Min WK, Han JH, Kang WH, Lee HR, Kim BD (2008) Reverse random amplified microsatellite polymorphism reveals enhanced polymorphisms in the 3′ end of simple sequence repeats in the pepper genome. Mol Cells 26:250–257PubMedGoogle Scholar
  14. Minamiyama Y, Tsuro M, Hirai M (2006) An SSR-based linkage map of Capsicum annuum. Mol Breeding 18:157–169. doi: 10.1007/s11032-006-9024-3 CrossRefGoogle Scholar
  15. Mueller LA, Solow TH, Taylor N, Skwarecki B, Buels R, Binns J, Lin C, Wright MH, Ahrens R, Wang Y, Herbst EV, Keyder ER, Menda N, Zamir D, Tanksley SD (2005) The SOL Genomics Network: a comparative resource for Solanaceae biology and beyond. Plant Physiol 138:1310–1317. doi: 10.1104/pp. 105.060707 CrossRefPubMedGoogle Scholar
  16. Portis E, Nagy I, Sasvari Z, Stagel A, Barchi L, Lanteri S (2007) The design of Capsicum spp. SSR assays via analysis of in silico DNA sequence, and their potential utility for genetic mapping. Plant Sci 172:640–648. doi: 10.1016/j.plantsci.2006.11.016 CrossRefGoogle Scholar
  17. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386Google Scholar
  18. Saha S, Karaca M, Jenkins JN, Zipf AE, Reddy OUK, Pepper AE, Kantety R (2003) Simple sequence repeats as useful resources to study transcribed genes of cotton. Euphytica 130:355–364. doi: 10.1023/A:1023077209170 CrossRefGoogle Scholar
  19. Sanwen H, Baoxi Z, Milbourne D, Cardle L, Guimei Y, Jiazhen G (2001) Development of pepper SSR markers from sequence databases. Euphytica 117:163–167CrossRefGoogle Scholar
  20. Strand AE, Leebens-Mack J, Milligan BG (1997) Nuclear DNA-based markers for plant evolutionary biology. Mol Ecol 6:113–118. doi: 10.1046/j.1365-294X.1997.00153.x CrossRefPubMedGoogle Scholar
  21. Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422. doi: 10.1007/s00122-002-1031-0 PubMedGoogle Scholar
  22. Wu F, Mueller LA, Crouzillat D, Pe´tiard V, Tanksley SD (2006) Combining bioinformatics and phylogenetics to identify large sets of single-copy orthologous genes (COSII) for comparative, evolutionary and systematic studies: a test case in the Euasterid plant clade. Genetics 174:1407–1420. doi: 10.1534/genetics.106.062455 CrossRefPubMedGoogle Scholar
  23. Yi G, Lee JM, Lee S, Choi D, Kim BD (2006) Exploitation of pepper EST-SSRs and an SSR-based linkage map. Theor Appl Genet 114:113–130. doi: 10.1007/s00122-006-0415-y CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Ayse Gul Ince
    • 1
  • Mehmet Karaca
    • 1
    Email author
  • Ahmet Naci Onus
    • 1
  1. 1.Faculty of Agriculture, Department of Field CropsAkdeniz UniversityAntalyaTurkey

Personalised recommendations