Advertisement

Plant Molecular Biology Reporter

, Volume 28, Issue 2, pp 277–284 | Cite as

Molecular Cloning and Characterization of Rubber Biosynthetic Genes from Taraxacum koksaghyz

  • Thomas Schmidt
  • Andrea Hillebrand
  • David Wurbs
  • Daniela Wahler
  • Malte Lenders
  • Christian Schulze Gronover
  • Dirk Prüfer
Article

Abstract

Rubber biosynthesis requires the action of specific enzymes known as cis-prenyltransferases (CPTs). These enzymes are responsible for the sequential addition of isopentenyl pyrophosphate units to the growing polyisoprene chain, a biochemical reaction thought to be stimulated by the presence of small rubber particle proteins (SRPPs). We have cloned, characterized, and analyzed the expression of three CPT genes (TkCPT1–3) and five SRPP genes (TkSRPP1–5) from the rubber-producing plant Taraxacum koksaghyz. The deduced TkCPT amino acid sequences showed significant levels of sequence identity with Hevea brasiliensis CPTs. We also found no obvious differences between SRPPs from T. koksaghyz, another rubber producer, and a non-rubber plant. The roles of the individual TkCPTs and TkSRRPs in rubber biosynthesis are discussed.

Keywords

Taraxacum koksaghyz Rubber Latex Laticifers Rubber particles 

Abbreviations

CPT cis

prenyltransferase

TPT trans

prenyltranferase

SRRP

small rubber particle proteins

REF

rubber elongation factor

Tk

Taraxacum koksaghyz

Notes

Acknowledgements

The technical assistance of Sandra Ponanta is gratefully acknowledged. This work was supported by grants from the Ministry of Science and Education of Germany (grant no. FKZ 0313712) and Evonik Industries.

References

  1. Ambo T, Noike M, Kurokawa H, Koyama T (2008) Cloning and functional analysis of novel short-chain cis-prenyltransferases. Biochem Biophys Res Commun 375:436–440CrossRefGoogle Scholar
  2. Asawatreratanakul K, Zhang Y-W, Wititsuwannakul D, Wititsuwannakul R, Takahashil S, Rattanapittayaporn A, Koyama T (2003) Molecular cloning, expression and characterization of cDNA encoding cis-prenyltransferases from Hevea brasiliensis. A key factor participating in natural rubber biosynthesis. Eur J Biochem 270:4671–4680.CrossRefPubMedGoogle Scholar
  3. Bushman BS, Scholte AA, Cornish K, Scott DJ, Brichta JLVederas JC, Ochoa O, Michelmore RW, Shintani DK, Knapp SJ (2006) Identification and comparison of natural rubber from two Lactuca species. Phytochemistry 67(23):2590–2596CrossRefPubMedGoogle Scholar
  4. Castillón J, Cornish K (1999) Regulation of initiation and polymer molecular weight of cis-1, 4-polyisoprene synthesized in vitro by particles isolated from Parthenium argentatum (Gray). Phytochemistry 51:43–51CrossRefGoogle Scholar
  5. Cornish K (1993) The separate roles of plant cis and trans prenyl transferases in cis-1, 4-polyisoprene biosynthesis. Eur J Biochem 218:267–271CrossRefPubMedGoogle Scholar
  6. Cornish K, Castillón J, Scott DJ (2000) Rubber molecular weight regulation, in vitro, in plant species that produce high and low molecular weights in vivo. Biomacromolecules 1(4):632–641CrossRefPubMedGoogle Scholar
  7. Dennis MS, Light DR (1989) Rubber elongation factor from Hevea brasiliensis. Identification, characterization, and role in rubber biosynthesis. J Biol Chem 264(31):18608–18617.PubMedGoogle Scholar
  8. El Moussaoui A, Nijs M, Paul C, Wintjens R, Vincentelli J, Azarkan M, Looze Y (2001) Revisiting the enzymes stored in the laticifers of Carica papaya in the context of their possible participation in the plant defence mechanism. Cell Mol Life Sci 58:556–570CrossRefPubMedGoogle Scholar
  9. Fujihashi M, Zhang Y-W, Higushi Y, Li X-Y, Koyama T, Miki K (2001) Crystal structure of cis-prenyl chain elongating enzyme, undecaprenyl diphosphate synthase. PNAS 98(8):4337–4342CrossRefPubMedGoogle Scholar
  10. Gechev TS, Minkov IN, Hille J (2005) Hydrogen peroxide-induced cell death in Arabidopsis: transcriptional and mutant analysis reveals a role of an oxoglutarate-dependent dioxygenase gene in the cell death process. IUBMB Life 57(3):181–188CrossRefPubMedGoogle Scholar
  11. Horton P, Park K-J, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucl Acids Res 35(Web Server issue):W585–W587CrossRefPubMedGoogle Scholar
  12. Kharel Y, Koyama T (2003) Molecular analysis of cis-prenyl chain elongating enzymes. Nat Prod Rep 20:111–118CrossRefPubMedGoogle Scholar
  13. Kharel Y, Takahashi S, Yamashita S, Koyama T (2006) Manipulation of prenyl chain length determination mechanism of cis-prenyltransferases. FEBS J 273:647–657CrossRefPubMedGoogle Scholar
  14. Kinoshita K, Sadanami K, Kidera A, Go N (1999) Structural motif of phosphate-binding site common to various protein superfamilies: all-against-all structural comparison of protein–mononucleotide complexes. Protein Eng 12:11–14CrossRefPubMedGoogle Scholar
  15. Ko JH, Chow K-S, Han K-H (2003) Transcriptome analysis reveals novel features of the molecular events occurring in the laticifers of Hevea brasiliensis (para rubber tree). Plant Mol Biol 53:479–492CrossRefPubMedGoogle Scholar
  16. Metcalfe CR (1967) Distribution of latex in the plant kingdom. Econ Bot 21:115–127Google Scholar
  17. Mooibroek H, Cornish K (2000) Alternative sources of natural rubber. Appl Microbiol Biotechnol 53:355–365CrossRefPubMedGoogle Scholar
  18. Oh SK, Kang H, Shin DH, Yang J, Chow K-S, Yeang HY, Wagner B, Breiteneder H, Han K-H (1999) Isolation, characterization, and functional analysis of a novel cDNA clone encoding a small rubber particle protein from Hevea brasiliensis. J Biol Chem 274(24):17132–17138CrossRefPubMedGoogle Scholar
  19. Oh SK, Han KH, Ryu SB, Kang H (2000) Molecular cloning, expression, and functional analysis of a cis-prenyltransferase from Arabidopsis thaliana. Implications in rubber biosynthesis. J Biol Chem 275(24):18482–18488CrossRefPubMedGoogle Scholar
  20. Polhamus LG (1962) Botany of Hevea. In: Rubber, botany production and utilization. Leonard hill, London, pp 63–90Google Scholar
  21. Sato M, Sato K, Nishikawa S-I, Hirata A, Kato J-I, Nakano A (1999) The yeast RER2 gene, identified by endoplasmic reticulum protein localization mutations, encodes cis-prenyltransferase, a key enzyme in dolichol synthesis. Mol Cell Biol 19(1):471–483PubMedGoogle Scholar
  22. Sato M, Fujisaki S, Sato K, Nishimura Y, Nakano A (2001) Yeast Saccharomyces cerevisiae has two cis-prenyltransferases with different properties and localizations. Implication for their distinct physiological roles in dolichol synthesis. Genes Cells 6:495–506CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Thomas Schmidt
    • 1
  • Andrea Hillebrand
    • 1
  • David Wurbs
    • 1
  • Daniela Wahler
    • 1
  • Malte Lenders
    • 1
  • Christian Schulze Gronover
    • 2
  • Dirk Prüfer
    • 1
    • 2
  1. 1.Institut für Biochemie und Biotechnologie der PflanzenWestfälische Wilhelms-Universität MünsterMünsterGermany
  2. 2.Fraunhofer Institut für Molekularbiologie und Angewandte ÖkologieAachenGermany

Personalised recommendations