Advertisement

The Promoters of Forisome Genes MtSEO2 and MtSEO3 Direct Gene Expression to Immature Sieve Elements in Medicago truncatula and Nicotiana tabacum

  • Gundula A. Noll
  • Boris Rüping
  • Antonia M. Ernst
  • Maria Bucsenez
  • Richard M. Twyman
  • Rainer Fischer
  • Dirk Prüfer
Article

Abstract

Forisomes are mechanoproteins that function as valves in the phloem sieve tubes of the Fabaceae. Changes in the Ca2+ level that occur after wounding trigger an instantaneous switch between the condensed and dispersed conformations, allowing forisomes to seal the sieve plate pores of injured sieve elements. Recently, three genes encoding forisome components from Medicago truncatula were identified [Medicago truncatula sieve element occlusion 1 (MtSEO1), MtSEO2 and MtSEO3] and MtSEO1 expression was shown to be restricted to immature sieve elements. Here, we present a detailed molecular analysis of the MtSEO2 and MtSEO3 promoters and show, through reverse transcriptase-polymerase chain reaction and reporter-transgenic experiments in M. truncatula roots and tobacco plants, that their expression profiles are comparable to MtSEO1. The impact of these data on the likelihood of MtSEO gene co-regulation by common transcription factors is discussed.

Keywords

Medicago truncatula Forisome Promoter Phloem Immature sieve elements 

Abbreviations

CC

companion cell

GFP

green fluorescent protein

GUS

β-glucuronidase

Mt

Medicago truncatula

SE

sieve element

SEO

sieve element occlusion

Notes

Acknowledgements

The technical assistance of Ann-Christin Müller is gratefully acknowledged. This work was partially supported by the BMBF grant 0312014, the Fraunhofer MAVO program and by the VolkswagenStiftung, contract no. I/82 075.

References

  1. Arsanto JP (1982) Observations on P-protein in dicotyledons. Substructural and developmental features. Am J Bot 69:1200–1212. doi: 10.2307/2443095 CrossRefGoogle Scholar
  2. Ayre BG, Blair JE, Turgeon R (2003) Functional and phylogenetic analyses of a conserved regulatory program in the phloem of minor veins. Plant Physiol 133:1229–1239. doi: 10.1104/pp. 103.027714 CrossRefPubMedGoogle Scholar
  3. Behnke HD (1991) Nondispersive protein bodies in sieve elements: a survey and review of their origin, distribution and taxonomic significance. IAWA Bull 12:143–175Google Scholar
  4. Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711–8721. doi: 10.1093/nar/12.22.8711 CrossRefPubMedGoogle Scholar
  5. Collier R, Fuchs B, Walter N, Lutke WK, Taylor CG (2005) Ex vitro composite plants: an inexpensive, rapid method for root biology. Plant J 43:449–457. doi: 10.1111/j.1365-313X.2005.02454.x CrossRefPubMedGoogle Scholar
  6. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  7. Fang Y, Spector DL (2007) Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants. Curr Biol 17:818–823. doi: 10.1016/j.cub.2007.04.005 CrossRefPubMedGoogle Scholar
  8. Hehn A, Rohde W (1998) Characterization of cis-acting elements affecting strength and phloem specificity of the coconut foliar decay virus promoter. J Gen Virol 79:1495–1499PubMedGoogle Scholar
  9. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database:1999. Nucleic Acids Res 27:297–300. doi: 10.1093/nar/27.1.297 CrossRefPubMedGoogle Scholar
  10. Horsch RB, Klee HJ, Stachel S, Winans SC, Nester EW, Rogers SG, Fraley RT (1986) Analysis of Agrobacterium tumefaciens virulence mutants in leaf discs. Proc Natl Acad Sci USA 83:2571–2575. doi: 10.1073/pnas.83.8.2571 CrossRefPubMedGoogle Scholar
  11. Jaeger M, Uhlig K, Clausen-Schaumann H, Duschl C (2008) The structure and functionality of contractible forisome protein aggregates. Biomaterials 29:247–256. doi: 10.1016/j.biomaterials.2007.09.020 CrossRefPubMedGoogle Scholar
  12. Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405. doi: 10.1007/BF02667740 CrossRefGoogle Scholar
  13. Knoblauch M, Peters WS, Ehlers K, van Bel AJE (2001) Reversible calcium-regulated stopcocks in legume sieve tubes. Plant Cell 13:1221–1230CrossRefPubMedGoogle Scholar
  14. Knoblauch M, Noll GA, Müller T, Prüfer D, Schneider-Hüther I, Scharner D, van Bel AJE, Peters WS (2003) ATP-independent contractile proteins from plants. Nat Mater 2:600–603. doi: 10.1038/nmat960 Erratum in Nature Mater 2005;4:353CrossRefPubMedGoogle Scholar
  15. Lawton DM (1978a) Ultrastructural comparison of the tailed and tailless P-protein crystals respectively of runner bean (Phaseolus multiflorus) and garden pea (Pisum sativum) with tilting stage electron microscopy. Protoplasma 97:1–11. doi: 10.1007/BF01276386 CrossRefGoogle Scholar
  16. Lawton DM (1978b) P-protein crystals do not disperse in uninjured sieve elements in roots of runner bean (Phaseolus multiflorus) fixed in glutaraldehyde. Ann Bot (Lond) 42:353–361Google Scholar
  17. Noll GA (2005) Molekularbiologische Charakterisierung der Forisome. Doctoral thesis, Justus-Liebig Universität, GießenGoogle Scholar
  18. Noll GA, Fontanellaz ME, Rüping B, Ashoub A, van Bel AJE, Fischer R, Knoblauch M, Prüfer D (2007) Spatial and temporal regulation of the forisome gene for1 in the phloem during plant development. Plant Mol Biol 65:285–294. doi: 10.1007/s11103-007-9217-0 CrossRefPubMedGoogle Scholar
  19. Palevitz BA, Newcomb EH (1971) The ultrastructure and development of tubular and crystalline P-protein in the sieve elements of certain papilionaceous legumes. Protoplasma 72:399–426. doi: 10.1007/BF01289511 CrossRefGoogle Scholar
  20. Pélissier HC, Peters WS, Collier R, van Bel AJ, Knoblauch M (2008) GFP tagging of sieve element occlusion (SEO) proteins results in green fluorescent forisomes. Plant Cell Physiol 49:1699–1710. doi: 10.1093/pcp/pcn141 CrossRefPubMedGoogle Scholar
  21. Pommerrenig B, Barth I, Niedermeier M, Kopp S, Schmid J, Dwyer RA, McNair RJ, Klebl F, Sauer N (2006) Common plantain. A collection of expressed sequence tags from vascular tissue and a simple and efficient transformation method. Plant Physiol 142:1427–1441. doi: 10.1104/pp. 106.089169 CrossRefPubMedGoogle Scholar
  22. Sanger F, Nickler S, Coulson AR (1977) DNA sequencing with chain termination inhibitors. Proc Natl Acad Sci USA 74:5463–5467. doi: 10.1073/pnas.74.12.5463 CrossRefPubMedGoogle Scholar
  23. Schmülling T, Schell J, Spena A (1989) Promoters of the rolA, B and C genes of Agrobacterium rhizogenes are differentially regulated in transgenic plants. Plant Cell 1:665–670CrossRefPubMedGoogle Scholar
  24. Schneidereit A, Imlau A, Sauer N (2008) Conserved cis-regulatory elements for DNA-binding-with-one-finger and homeo-domain-leucine-zipper transcription factors regulate companion cell-specific expression of the Arabidopsis thaliana SUCROSE TRANSPORTER 2 gene. Planta 228:651–662. doi: 10.1007/s00425-008-0767-4 CrossRefPubMedGoogle Scholar
  25. Schwan S, Fritzsche M, Cismak A, Heilmann A, Spohn U (2007a) In vitro investigation of the geometric contraction behavior of chemo-mechanical P-protein aggregates (forisomes). Biophys Chem 125:444–452. doi: 10.1016/j.bpc.2006.10.008 CrossRefPubMedGoogle Scholar
  26. Schwan S, Fritzsche M, Cismak A, Noll GA, Prüfer D, Spohn U, Heilmann A (2007b) Micromechanical measurements on chemo-mechanical protein aggregates. MRS Proc 0975:DD03–DD10Google Scholar
  27. Sessa G, Steindler C, Morelli G, Ruberti I (1998) The Arabidopsis Athb-8, -9 and -14 genes are members of a small gene family coding for highly related HD-ZIP proteins. Plant Mol Biol 38:609–622. doi: 10.1023/A:1006016319613 CrossRefPubMedGoogle Scholar
  28. Thompson MV, Wolniak SM (2008) A plasma membrane-anchored fluorescent protein fusion illuminates sieve element plasma membranes in Arabidopsis and tobacco. Plant Physiol 146:1599–1610. doi: 10.1104/pp. 107.113274 CrossRefPubMedGoogle Scholar
  29. Truernit E, Sauer N (1995) The promoter of the Arabidopsis thaliana SUC2 sucrose-H + symporter gene directs expression of beta-glucuronidase to the phloem: evidence for phloem loading and unloading by SUC2. Planta 196:564–570. doi: 10.1007/BF00203657 CrossRefPubMedGoogle Scholar
  30. Wergin WP, Newcomb EH (1970) Formation and dispersal of crystalline P-protein in sieve elements of soybean (Glycine max L.). Protoplasma 71:365–388. doi: 10.1007/BF01279682 CrossRefGoogle Scholar
  31. Will T, Tjallingii WF, Thönnessen A, van Bel AJE (2007) Molecular sabotage of plant defense by aphids. Proc Natl Acad Sci USA 104:10536–10541. doi: 10.1073/pnas.0703535104 CrossRefPubMedGoogle Scholar
  32. Yanagisawa S (1995) A novel DNA-binding domain that may form a single zinc finger motif. Nucleic Acids Res 23:3403–3410. doi: 10.1093/nar/23.17.3403 CrossRefPubMedGoogle Scholar
  33. Yanagisawa S, Schmidt RJ (1999) Diversity and similarity among recognition sequences of Dof transcription factors. Plant J 17:209–214. doi: 10.1046/j.1365-313X.1999.00363.x CrossRefPubMedGoogle Scholar
  34. Zhao Y, Liu Q, Davis RE (2004) Transgene expression in strawberries driven by a heterologous phloem-specific promoter. Plant Cell Rep 23:224–230. doi: 10.1007/s00299-004-0812-0 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Gundula A. Noll
    • 1
  • Boris Rüping
    • 1
  • Antonia M. Ernst
    • 1
  • Maria Bucsenez
    • 1
  • Richard M. Twyman
    • 2
  • Rainer Fischer
    • 3
  • Dirk Prüfer
    • 1
    • 3
  1. 1.Institut für Biochemie und Biotechnologie der Pflanzen der Westfälischen WilhelmsUniversität MünsterMünsterGermany
  2. 2.Department of BiologyUniversity of YorkYorkUK
  3. 3.Fraunhofer Institute for Molecular Biology and Applied Ecology (IME)AachenGermany

Personalised recommendations