Advertisement

Analysis of Expressed Sequence Tags (ESTs) Collected from the Inflorescence of Chrysanthemum

  • Sumei Chen
  • Hengbin Miao
  • Fadi ChenEmail author
  • Beibei Jiang
  • Jungang Lu
  • Weimin Fang
Article

Abstract

The expressed sequence tags (ESTs) described in this report were obtained from the inflorescence of chrysanthemum. A complementary DNA (cDNA) library was constructed from the inflorescence of the anemone-type chrysanthemum ‘Zhongshanzigui’. In total, 7,307 cDNA clones were sequenced, representing 4,563 unique sequences and consisting of 3,567 singletons and 996 contigs. Comparison to the GenBank nonredundant (nr) database revealed 57.2% (2,608/4,563) chrysanthemum sequences with homology to genes of known function of other organisms. Approximately 26.67% (1,217/4,563) of the unigenes were clustered into 23 categories by the clusters of orthologous group analysis: Most of the identified transcripts were genes related to metabolism, subcellular localization, protein biosynthesis, and cell wall structure. The ESTs presented here will be a valuable addition to floral development transcriptional database.

Keywords

Expressed sequence tags (ESTs) Transcripts Inflorescence Chrysanthemum 

Abbreviations

cDNA

Complementary DNA

CDS

Coding regions

contigs

Contiguous consensus sequences

COGs

The clusters of orthologous groups

ESTs

Expressed sequence tags

nr

Nonredundant

SNPs

Single nucleotide polymorphisms

TFs

Transcription factors

UTR

Untranslated region

Notes

Acknowledgments

The authors would like to thank Prof. Hiroaki Kodama of Graduate School of Horticulture, Chiba University, Japan, for his advices on cDNA library construction and Beijing Genomics Institute (BGI) for EST sequencing and assembling. This work was supported by the Program for New Century Excellent Talents in University of Chinese Ministry of Education (Grant No. NCET-06-0489), the National Natural Science Foundation of China (Grant No. 30872064), China Postdoctoral Science Foundation funded project (Grant No. 20070411058), and National Key Technology R&D Program of the Ministry of Science and Technology of the People’s Republic of China (Grant No. 2006BAD01A1806).

References

  1. Aida R, Komano M, Saito M, Nakase K, Murai K (2008) Chrysanthemum flower shape modification by suppression of chrysanthemum-AGAMOUS gene. Plant Biotechnol 25:55–59Google Scholar
  2. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi: 10.1093/nar/25.17.3389 CrossRefPubMedGoogle Scholar
  3. Bevan M, Bancroft I, Bent E, Love K, Goodman H, Dean C et al (1998) Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature 391:485–488. doi: 10.1038/35140 CrossRefPubMedGoogle Scholar
  4. Bey M, Stueber K, Fellenberg K, Schwarz-Sommer Z, Sommer H, Saedler H et al (2004) Characterization of antirrhinum petal development and identification of target genes of the class B MADS box gene DEFICIENS. Plant Cell 16(12):3197–3215. doi: 10.1105/tpc.104.026724 CrossRefPubMedGoogle Scholar
  5. Cardon G, Hohmann S, Klein J, Nettesheim K, Saedler H, Huijser P (1999) Molecular characterization of the Arabidopsis SBP-box genes. Gene 237:91–104. doi: 10.1016/S0378-1119(99)00308-X CrossRefPubMedGoogle Scholar
  6. Carlson JE, Leebens-Mack JH, Wall PK, Zahn LM, Mueller LA, Landherr LL et al (2006) EST database for early flower development in California poppy (Eschscholzia californica Cham. Papaveraceae) tags over 6000 genes from a basal eudicot. Plant Mol Biol 62:351–369. doi: 10.1007/s11103-006-9025-y CrossRefPubMedGoogle Scholar
  7. Channeliere S, Riviere S, Scalliet G, Szecsi J, Jullien F, Dolle C et al (2002) Analysis of gene expression in rose petals using expressed sequence tags. FEBS Lett 515:35–38. doi: 10.1016/S0014-5793(02)02413-4 CrossRefPubMedGoogle Scholar
  8. Cockshull KE (1985) Chrysanthemum morifolium. In: Halevy A (ed) CRC handbook of flowering, vol 2. CRC, Boca Raton, FL, pp 236–257Google Scholar
  9. Courtney-Gutterson N, Otten A, Firoozabady E, Akerboom M, Lemieux C, Nicholas J (1993) Production of genetically engineered color-modified chrysanthemum plants carrying a homologous chalcone synthase gene and their field performance. Acta Hortic 336:57–62Google Scholar
  10. Delseny M (2003) Towards an accurate sequence of the rice genome. Curr Opin Plant Biol 6:101–105. doi: 10.1016/S1369-5266(03)00010-4 CrossRefPubMedGoogle Scholar
  11. Fourgoux-Nicol A, Drouaud J, Haouazine N, Pelletier G, Guerche P (1999) Isolation of rapeseed genes expressed early and specifically during development of the male gametophyte. Plant Mol Biol 40:857–872. doi: 10.1023/A:1006282507095 CrossRefPubMedGoogle Scholar
  12. Fukai S (1995) Cryopreservation of germplasm of chrysanthemums. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 2. Cryopreservation of plant germplasm I. Springer, Berlin, pp 447–457Google Scholar
  13. Hauser BA, He JQ, Park SO, Gasser CS (2000) TSO1 is a novel protein that modulates cytokinesis and cell expansion in Arabidopsis. Development 127:2219–2226PubMedGoogle Scholar
  14. Katsuyoshi S, Takeshi I, Kazuma N, Kiyoshi M, Hiroaki K, Hitoshi W et al (2007) Analysis of expressed sequence tags from Petunia flowers. Plant Sci 173:495–500. doi: 10.1016/j.plantsci.2007.07.011 CrossRefGoogle Scholar
  15. Kieffer M, Davies B (2001) Developmental programmes in floral organ formation. Semin Cell Dev Biol 12:373–380. doi: 10.1006/scdb.2001.0266 CrossRefPubMedGoogle Scholar
  16. Kishimoto S, Ohmiya A (2006) Regulation of carotenoid biosynthesis in petals and leaves of chrysanthemum (Chrysanthemum morifolium). Physiol Plant 128:436–447. doi: 10.1111/j.1399-3054.2006.00761.x CrossRefGoogle Scholar
  17. Kostov RV, Small CL, McFadden BA (1997) Mutations in a sequence near the N-terminus of the small subunit alter the CO2/O2 specificity factor for ribulose bisphosphate carboxylase/oxygenase. Photosynth Res 54:127–134. doi: 10.1023/A:1005967106993 CrossRefGoogle Scholar
  18. Kotilainen M, Helariutta Y, Mehto M, Pöllänen E, Albert VA, Elomaa P et al (1999) GEG participates in the regulation of cell and organ shape during corolla and carpel development in Gerbera hybrida. Plant Cell 11:1093–1104CrossRefPubMedGoogle Scholar
  19. Kotilainen M, Elomaa P, Uimari A, Albert VA, Yu D, Teeri TH (2000) GRCD1, an AGL2-like MADS box gene, participates in the C function during stamen development in Gerbera hybrida. Plant Cell 12:1893–1902CrossRefPubMedGoogle Scholar
  20. Laitinen RAE, Immanen J, Auvinen P, Rudd S, Alatalo E, Paulin L et al (2005) Analysis of the floral transcriptome uncovers new regulators of organ determination and gene families related to flower organ differentiation in Gerbera hybrida (Asteraceae). Genome Res 15:475–486. doi: 10.1101/gr.3043705 CrossRefPubMedGoogle Scholar
  21. Lannenpaa M, Janonen I, Holtta-Vuori M, Gardemeister M, Porali I, Sopanen T (2004) A new SBP-box gene BpSPL1 in silver birch (Betula pendula). Physiol Plant 120:491–500. doi: 10.1111/j.0031-9317.2004.00254.x CrossRefPubMedGoogle Scholar
  22. Lohmann JU, Weigel D (2002) Building beauty: the genetic control of floral patterning. Dev Cell 2:135–142. doi: 10.1016/S1534-5807(02)00122-3 CrossRefPubMedGoogle Scholar
  23. Ma YP, Fang XH, Chen F, Dai SL (2008) DFL, a FLORICAULA/LEAFY homologue gene from Dendranthema lavandulifolium is expressed both in the vegetative and reproductive tissues. Plant Cell Rep 27:647–654. doi: 10.1007/s00299-007-0489-2 CrossRefPubMedGoogle Scholar
  24. Moriyasu Y, Hattori M, Jauh GY, Rogers JC (2003) Alpha tonoplast intrinsic protein is specifically associated with vacuole membrane involved in an autophagic process. Plant Cell Physiol 44(8):795–802. doi: 10.1093/pcp/pcg100 CrossRefPubMedGoogle Scholar
  25. Nakatsuka T, Mishibaa K, Abe Y, Kubota A, Kakizaki Y, Yamamura S et al (2008) Flower color modification of gentian plants by RNAi-mediated gene silencing. Plant Biotechnol 25:61–68Google Scholar
  26. Nilsson O, Lee H, Blazquez MA, Weigel D (1998) Flowering time genes modulate the response to LEAFY activity. Genetics 150(1):403–410PubMedGoogle Scholar
  27. Ohlrogge B (2000) Unravelling plant metabolism by EST analysis. Curr Opin Plant Biol 3:224–228PubMedGoogle Scholar
  28. Ohmiya A, Kishimoto S, Aida R, Yoshioka S, Sumitomo K (2006) Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. Plant Physiol 142:1193–1201. doi: 10.1104/pp.106.087130 CrossRefPubMedGoogle Scholar
  29. Outchkourov NS, Peters J, de Jong J, Rademakers W, Jongsma MA (2003) The promoter–terminator of chrysanthemum rbcS1 directs very high expression levels in plants. Planta 216:1003–1012PubMedGoogle Scholar
  30. Pang Y, Shen G, Wu W, Liu X, Lin J, Tan F et al (2005) Characterization and expression of chalcone synthase gene from Ginkgo biloba. Plant Sci 168(6):1525–1531. doi: 10.1016/j.plantsci.2005.02.003 CrossRefGoogle Scholar
  31. Riechmann JL, Heard J, Martin G, Reuber L, Jiang CZ, Keddie J et al (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110. doi: 10.1126/science.290.5499.2105 CrossRefPubMedGoogle Scholar
  32. Sessions A, Yanofsky MF, Weigel D (1998) Patterning the floral meristem. Semin Cell Dev Biol 9:221–226. doi: 10.1006/scdb.1997.0206 CrossRefPubMedGoogle Scholar
  33. Shchennikova AV, Shulga OA, Angenent GC, Skryabin KG (2003) Genetic regulation of inflorescence development in Chrysanthemum. Dokl Biol Sci 391:368–370. doi: 10.1023/A:1025123222257 CrossRefPubMedGoogle Scholar
  34. Shchennikova AV, Shulga OA, Immink R, Skryabin KG, Angenent GC (2004) Identification and characterization of four Chrysanthemum MADS-Box genes, belonging to the APETALA1/FRUITFULL and SEPALLATA3 subfamilies. Plant Physiol 134:1632–1641. doi: 10.1104/pp.103.036665 CrossRefPubMedGoogle Scholar
  35. Siegfried KR, Eshed Y, Baum SF, Otsuga D, Drews GN, Bowman JL (1999) Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development 126:4117–4128PubMedGoogle Scholar
  36. Spencer DF, Schnare MN, Coulthart MB, Gray MW (1992) Sequence and organization of a 7.2 kb region of wheat mitochondrial DNA containing the large subunit (26S) rRNA gene. Plant Mol Biol 20:347–352. doi: 10.1007/BF00014506 CrossRefPubMedGoogle Scholar
  37. Sung ZR, Chen L, Moon YH, Lertpiriyapong K (2003) Mechanisms of floral repression in Arabidopsis. Curr Opin Plant Biol 6:29–35. doi: 10.1016/S1369-5266(02)00014-6 CrossRefPubMedGoogle Scholar
  38. Tsai WC, Hsiao YY, Lee SH, Tung CW, Wang DP, Wang HC et al (2006) Expression analysis of the ESTs derived from the flower buds of Phalaenopsis equestris. Plant Sci 170:426–432. doi: 10.1016/j.plantsci.2005.08.029 CrossRefGoogle Scholar
  39. Unte US, Sorensen AM, Pesaresi P, Gandikota M, Leister D, Saedler H et al (2003) SPL8, an SBP-box gene that affects pollen sac development in Arabidopsis. Plant Cell 15:1009–1019. doi: 10.1105/tpc.010678 CrossRefPubMedGoogle Scholar
  40. Weigel D (1998) From floral induction to floral shape. Curr Opin Plant Biol 1:55–59. doi: 10.1016/S1369-5266(98)80128-3 CrossRefPubMedGoogle Scholar
  41. Weigel D, Meyerowitz EM (1994) The ABCs of floral homeotic genes. Cell 78:203–209. doi: 10.1016/0092-8674(94)90291-7 CrossRefPubMedGoogle Scholar
  42. Yang J, Huang J, Gu H, Zhong Y, Yang Z (2002) Duplication and adaptive evolution of the chalcone synthase genes of Dendranthema (Asteraceae). Mol Biol Evol 19(10):1752–1759PubMedGoogle Scholar
  43. Yang W, Bai X, Kabelka E, Eaton C, Kamoun S, van der Knaap E et al (2004) Discovery of single nucleotide polymorphisms in Lycopersicon esculentum by computer aided analysis of expressed sequence tags. Mol Breed 14:21–34. doi: 10.1023/B:MOLB.0000037992.03731.a5 CrossRefGoogle Scholar
  44. Yu D, Kotilainen M, Pollanen E, Mehto M, Elomaa P, Helariutta Y et al (1999) Organ identity genes and modified patterns of flower development in Gerbera hybrida (Asteraceae). Plant J 17:51–62. doi: 10.1046/j.1365-313X.1999.00351.x CrossRefPubMedGoogle Scholar
  45. Zhao D, Yu Q, Chen C, Ma H (2001) Genetic control of reproductive meristems. In: McManus MT, Veit B (eds) Annual plant review: meristematic tissues in plant growth and development. Sheffield Academic, Sheffield, pp 89–142Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Sumei Chen
    • 1
  • Hengbin Miao
    • 1
  • Fadi Chen
    • 1
    Email author
  • Beibei Jiang
    • 1
  • Jungang Lu
    • 1
  • Weimin Fang
    • 1
  1. 1.Key Laboratory of Flower Breeding and Genetics, College of HorticultureNanjing Agricultural UniversityNanjingChina

Personalised recommendations