Plant Molecular Biology Reporter

, Volume 27, Issue 2, pp 126–131 | Cite as

Development of Chromosome Segment Substitution Lines Derived from Backcross between Two Sequenced Rice Cultivars, Indica Recipient 93-11 and Japonica Donor Nipponbare

  • Wenyin Zhu
  • Jing Lin
  • Dewei Yang
  • Ling Zhao
  • Yadong Zhang
  • Zhen Zhu
  • Tao Chen
  • Cailin WangEmail author


Chromosome segment substitution lines (CSSLs) are powerful tools for detecting and precisely mapping quantitative trait loci (QTLs) and evaluating gene action as a single factor. In this study, 103 CSSLs were produced using two sequenced rice cultivars: 93-11, an elite restorer indica cultivar as recipient, and Nipponbare, a japonica cultivar, as donor. Each CSSL carried a single chromosome substituted segment. The total length of the substituted segments in the CSSLs was 2,590.6 cM, which was 1.7 times of the rice genome. To evaluate the potential application of these CSSLs for QTL detection, phenotypic variations of seed shattering, grain length and grain width in 10 CSSLs were observed. Two QTLs for seed shattering and three for grain length and grain width were identified and mapped on rice chromosomes. The results demonstrate that CSSLs are excellent genetic materials for dissecting complex traits into a set of monogenic loci. These CSSLs are of great potential value for QTL mapping and plant marker-assisted breeding (MAB).


Chromosome segment substitution lines Quantitative trait loci Rice SSR marker 



Chromosome segment substitution lines


Marker-assisted breeding


Marker-assisted selection


Quantitative trait loci


Simple sequence repeats



These studies were funded by National Science and Technology Program (2006BAD01A01), Major Research Program of Agricultural Structure Adjustment (05-01-05B) and Jiangsu High Technology Program (BG2004304, BG2005301).


  1. Ahn SN, Suh JP, Oh CS, Lee SJ, Suh HS. Development of introgression lines of weedy rice in the background of Tongil-type rice. Rice Genet Newsl 2002;19:14–5.Google Scholar
  2. Aida Y, Tsunematsu H, Doi K, Yoshimura A. Development of a series of introgression lines of japonica in the background of indica rice. Rice Genet Newsl 1997;14:41–3.Google Scholar
  3. Bernacchi D, Beck-Bunn T, Emmatty D, Eshed Y, Inai S, Lopez J, et al. Advanced backcross QTL analysis of tomato: II. Evaluation of near-isogenic lines carrying single-donor introgressions for desirable wild QTL-alleles derived from Lycopersicon Hirsutum and L. pimpinellifolium. Theor Appl Genet 1998;97:170–80. doi: 10.1007/s001220050882.CrossRefGoogle Scholar
  4. Chetelat RT, Meglic V. Molecular mapping of chromosome segments introgressed from Solanum lycopersicoides into cultivated tomato (Lycopersicon esculentum). Theor Appl Genet 2000;100:232–41. doi: 10.1007/s001220050031.CrossRefGoogle Scholar
  5. Doi K, Iwata N, Yoshimura A. The construction of chromosome substitution lines of African rice (Oryza glaberrima Steud.) in the background of Japonica rice (O. sativa L.). Rice Genet Newsl 1997;14:39–41.Google Scholar
  6. Ebitani T, Takeuchi Y, Nonoue Y, Yamamoto T, Takeuchi K, Yano M. Construction and evaluation of chromosome segment substitution lines carrying overlapping chromosome segments of indica rice cultivar ‘Kasalath’ in a genetic background of japonica elite cultivar ‘Koshihikari’. Breed Sci 2005;55:65–73. doi: 10.1270/jsbbs.55.65.CrossRefGoogle Scholar
  7. Eshed Y, Zamir D. A genomic library of Lycopersicon pennellii in L. esculentum: a tool for fine mapping of genes. Euphytica 1994;79:175–9. doi: 10.1007/BF00022516.CrossRefGoogle Scholar
  8. Eshed Y, Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 1995;141:1147–62.PubMedGoogle Scholar
  9. He FH, Xi ZY, Zeng RZ, Talukdar A, Zhang GQ. Developing single segment substitution lines (SSSLs) in rice (Oryza sativa L.) using advanced backcrosses and MAS. Acta Genet Sin 2005;32:825–31.PubMedGoogle Scholar
  10. Howell PM, Marshall DF, Lydiate DJ. Towards developing intervarietal substitution lines in Brassica napus using marker-assisted selection. Genome 1996;39:348–58. doi: 10.1139/g96-045.PubMedCrossRefGoogle Scholar
  11. Huang N, McCouch SR, Mew T, Parco A, Guiderdoni E. Development of an RFLP map from a doubled haploid population in rice. Rice Genet Newsl 1994;11:134–7.Google Scholar
  12. Jena KK, Kochert G, Khush GS. RFLP analysis of rice (Oryza sativa L.) introgression lines. Theor Appl Genet 1992;84:608–16. doi: 10.1007/BF00224159.CrossRefGoogle Scholar
  13. Konishi S, Izawa T, Lin SY, Ebana K, Fukuta Y, Sasaki T, et al. An SNP cause loss of seed shattering during rice domestication. Science 2006;312:1392–6. doi: 10.1126/science.1126410.PubMedCrossRefGoogle Scholar
  14. Kubo T, Aida Y, Nakamura K, Tsunematsu H, Doi K, Yoshimura A. Reciprocal chromosome segment substitution series derived from japonica and indica cross of rice (Oryza sativa L.). Breed Sci 2002;52:319–25. doi: 10.1270/jsbbs.52.319.CrossRefGoogle Scholar
  15. Li CB, Zhou AL, Sang T. Rice domestication by reducing shattering. Science 2006;311:1936–9. doi: 10.1126/science.1123604.PubMedCrossRefGoogle Scholar
  16. Liu GM, Li WT, Zeng RZ, Zhang GQ. Development of single segment substitution lines (SSSLs) of subspecies in rice. Chin J Rice Sci 2003;17:201–4.Google Scholar
  17. McCouch SR, Doerge RW. QTL mapping in rice. Trends Genet 1995;11:482–7. doi: 10.1016/S0168-9525(00)89157-X.PubMedCrossRefGoogle Scholar
  18. McCouch SR, Teytelman L, Xu YB, Lobos KB, Clare K, Walton M, et al. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 2002;9:199–207. doi: 10.1093/dnares/9.6.199.PubMedCrossRefGoogle Scholar
  19. Mei HW, Xu JL, Li ZK, Yu Q, Guo LB, Wang YP, et al. QTLs influencing panicle size detected in two reciprocal introgressive line populations in rice (Oryza sativa L.). Theor Appl Genet 2006;112:648–56. doi: 10.1007/s00122-005-0167-0.PubMedCrossRefGoogle Scholar
  20. Panaud O, Chen X, McCouch SR. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet 1996;252:597–607.PubMedGoogle Scholar
  21. Paterson AH. Molecular dissection of quantitative traits: progress and prospects. Genome Res 1995;5:321–33. doi: 10.1101/gr.5.4.321.PubMedCrossRefGoogle Scholar
  22. Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD. Resolution of quantitative traits into Mendelian factors, using a complete linkage map of restriction fragment length polymorphisms. Nature 1988;335:721–6. doi: 10.1038/335721a0.PubMedCrossRefGoogle Scholar
  23. Peleman JD, van der Voort JR. Breeding by design. Trends Plant Sci 2003;8:330–4. doi: 10.1016/S1360-1385(03)00134-1.PubMedCrossRefGoogle Scholar
  24. Rae SJ, Macaulay M, Ramsay L, Leigh F, Matthews D, O’Sullivan DM, et al. Molecular barley breeding. Euphytica 2007;158:295–303. doi: 10.1007/s10681-006-9166-8.CrossRefGoogle Scholar
  25. Ribaut JM, Hoisington D. Marker-assisted selection: new tools and strategies. Trends Plant Sci 1998;3:236–9. doi: 10.1016/S1360-1385(98)01240-0.CrossRefGoogle Scholar
  26. Takai T, Nonoue Y, Yamamoto S, Yamanouchi U, Matsubara K, Liang ZW, et al. Development of chromosome segment substitution lines derived from backcross between indica donor cultivar ‘Nona bokra’ and japonica recipient cultivar ‘Koshihikari’. Breed Sci 2007;57:257–61. doi: 10.1270/jsbbs.57.257.CrossRefGoogle Scholar
  27. Tan YF, Xing YZ, Li JX, Yu SB, Xu CG, Zhang QF. Genetic bases of appearance quality of rice grains in Shan you 63, an elite rice hybrid. Theor Appl Genet 2000;101:823–9. doi: 10.1007/s001220051549.CrossRefGoogle Scholar
  28. Tanksley SD. Mapping polygenes. Annu Rev Genet 1993;27:205–33. doi: 10.1146/ Scholar
  29. Tsunematsu H, Yoshimura A, Harushima Y, Nagamura Y, Kurata N, Yano M, et al. RFLP framework map using recombinant inbred lines in rice. Breed Sci 1996;46:279–84.Google Scholar
  30. Von Korff M, Wang H, Leon J, Pillen K. Development of candidate introgression lines using an exotic barley accession (Hordeum vulgare ssp. spontaneum) as donor. Theor Appl Genet 2004;109:1736–45. doi: 10.1007/s00122-004-1818-2.CrossRefGoogle Scholar
  31. Wan XY, Wan JM, Jiang L, Wang JK, Zhai HQ, Weng JF, et al. QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects. Theor Appl Genet 2006;112:1258–70. doi: 10.1007/s00122-006-0227-0.PubMedCrossRefGoogle Scholar
  32. Xi ZY, He FH, Zeng RZ, Zhang ZM, Ding XH, Li WT, et al. Development of a wide population of chromosome single-segment substitution lines in the genetic background of an elite cultivar of rice (Oryza sativa L.). Genome 2006;49:476–84. doi: 10.1139/G06-005.PubMedCrossRefGoogle Scholar
  33. Xing RZ, Tan YF, Xu CG, Hua JP, Sun LX. Mapping quantitative trait loci for grain appearance traits of rice using a recombinant inbred line population. Acta Bot Sin 2001;43:840–5.Google Scholar
  34. Yano M. Genetic and molecular dissection of naturally occurring variations. Curr Opin Plant Biol 2001;4:130–5. doi: 10.1016/S1369-5266(00)00148-5.PubMedCrossRefGoogle Scholar
  35. Yano M, Sasaki T. Genetic and molecular dissection of quantitative traits in rice. Plant Mol Biol 1997;35:145–53. doi: 10.1023/A:1005764209331.PubMedCrossRefGoogle Scholar
  36. Young ND, Tanksley SD. Restriction fragment length polymorphism maps and the concept of graphical genotypes. Theor Appl Genet 1989;77:95–101. doi: 10.1007/BF00292322.CrossRefGoogle Scholar
  37. Zamir D. Improving plant breeding with exotic genetic libraries. Nat Rev Genet. 2001;2:983–9. doi: 10.1038/35103589.PubMedCrossRefGoogle Scholar
  38. Zheng KL, Huang N, Bennett J. PCR-based marker-assisted selection in rice breeding. IRRI discussion paper series No.12 1995Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Wenyin Zhu
    • 1
  • Jing Lin
    • 1
  • Dewei Yang
    • 1
  • Ling Zhao
    • 1
  • Yadong Zhang
    • 1
  • Zhen Zhu
    • 1
  • Tao Chen
    • 1
  • Cailin Wang
    • 1
    Email author
  1. 1.Institute of Food Crops, Jiangsu High Quality Rice Research and Development CenterJiangsu Academy of Agricultural SciencesNanjingPeople’s Republic of China

Personalised recommendations