Plant Molecular Biology Reporter

, Volume 26, Issue 3, pp 255–262 | Cite as

Insertions–Deletions in a Microsatellite Flanking Region May Be Resolved by Variation in Stuttering Patterns



Microsatellites or simple sequence repeats (SSRs) may display polymerase-chain-reaction-amplified fragment lengths mismatching the patterns expected from repeat copy number variation. We sequenced alleles of a nuclear dinucleotide SSR locus in two oak species which showed 2- and 1-bp length differences between alleles and three types of stuttering patterns in fragment length analysis. In accordance with the variation in stuttering, we identified three allele classes characterized by insertions–deletions in the flanking regions and overlapping repeat copy number ranges. Different alleles could thus only be safely separated when considering these stuttering patterns. Our results raise the question of how to adequately delimit alleles when such size homoplasy is present. We advise to thoroughly characterize SSR sequence variation during marker development and to carefully place primer sites along flanking regions to facilitate automated allele scoring and to minimize labor-intensive visual inspection.


Allele calling Flanking region Fragment length analysis Nuclear microsatellite Nucleotide substitutions Simple sequence repeat Size homoplasy Stuttering pattern 



base pair


fragment length analysis




nuclear simple sequence repeat


polymerase chain reaction


  1. Adams RI, Brown KM, Hamilton MB. The impact of microsatellite electromorph size homoplasy on multilocus population structure estimates in a tropical tree (Corythophora alta) and an anadromous fish (Morone saxatilis). Mol Ecol. 2004;13(9):2579–88.PubMedCrossRefGoogle Scholar
  2. Brohede J, Ellegren H. Microsatellite evolution: polarity of substitutions within repeats and neutrality of flanking sequences. Proc R Soc Lond B. 1999;266(1421):825–33.CrossRefGoogle Scholar
  3. Curtu A-L, Finkeldey R, Gailing O. Comparative sequencing of a microsatellite locus reveals size homoplasy within and between European oak species (Quercus spp.). Plant Mol Biol Reptr. 2004;22(4):339–46.CrossRefGoogle Scholar
  4. Ellegren H. Microsatellites: simple sequences with complex evolution. Nat Rev Genet. 2004;5(6):435–45.PubMedCrossRefGoogle Scholar
  5. Estoup A, Jarne P, Cornuet J-M. Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. Mol Ecol. 2002;11(9):1591–604.PubMedCrossRefGoogle Scholar
  6. Goldstein DB, Schlötterer C. Microsatellites: evolution and application. Oxford: Oxford University Press; 1999.Google Scholar
  7. González-Martínez SC, Robledo-Arnuncio JJ, Collada C, et al. Cross-amplification and sequence variation of microsatellite loci in Eurasian hard pines. Theor Appl Genet. 2004;109(1):103–11.PubMedCrossRefGoogle Scholar
  8. Gugerli F, Walser J-C, Dounavi K, et al. Coincidence of small-scale spatial discontinuities in leaf morphology and nuclear microsatellite variation of Quercus petraea and Q. robur in a mixed forest. Ann Bot. 2007;99(4):713–22.PubMedCrossRefGoogle Scholar
  9. Hoffman JI, Amos W. Microsatellite genotyping errors: detection approaches, common sources and consequences for paternal exclusion. Mol Ecol. 2005;14(2):599–612.PubMedCrossRefGoogle Scholar
  10. Kampfer S, Lexer C, Glössl J, et al. Characterization of (GA)(n) microsatellite loci from Quercus robur. Hereditas 1998;129(2):183–6.CrossRefGoogle Scholar
  11. Kimura M, Ohta T. Stepwise mutation model and distribution of allelic frequencies in a finite population. Proc Natl Acad Sci U S A. 1978;75(6):2868–72.PubMedCrossRefGoogle Scholar
  12. Lexer C, Kremer A, Petit RJ. Shared alleles in sympatric oaks: recurrent gene flow is a more parsimonious explanation than ancestral polymorphism. Mol Ecol. 2006;15(7):2007–12.PubMedCrossRefGoogle Scholar
  13. Muir G, Schlötterer C. Moving beyond single-locus studies to characterize hybridization between oaks (Quercus spp.). Mol Ecol. 2006;15(8):2301–4.PubMedCrossRefGoogle Scholar
  14. Ortí G, Pearse DE, Avise JC. Phylogenetic assessment of length variation at a microsatellite locus. Proc Natl Acad Sci U S A. 1997;94(20):10745–9.PubMedCrossRefGoogle Scholar
  15. Reece KS, Ribeiro WL, Gaffney PM, et al. Microsatellite marker development and analysis in the Eastern Oyster (Crassostrea virginica): confirmation of null alleles and non-Mendelian segregation ratios. J Hered. 2004;95(4):346–51.PubMedCrossRefGoogle Scholar
  16. Schlötterer C. Genome evolution: are microsatellites really simple sequences. Curr Biol. 1998;8(4):R132–4.PubMedCrossRefGoogle Scholar
  17. Selkoe KA, Toonen RJ. Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett. 2006;9(5):615–29.PubMedCrossRefGoogle Scholar
  18. Shepherd LD, Lambert DM. Mutational bias in penguin microsatellite DNA. J Hered. 2005;96(5):566–71.PubMedCrossRefGoogle Scholar
  19. Steinkellner H, Fluch S, Turetschek E, et al. Identification and characterization of (GA/CT)n-microsatellite loci from Quercus petraea. Plant Mol Biol. 1997;33(6):1093–6.PubMedCrossRefGoogle Scholar
  20. Zhang D-X, Hewitt GM. Nuclear DNA analyses in genetic studies of populations: practice, problems and prospects. Mol Ecol. 2003;12(3):563–84.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Felix Gugerli
    • 1
  • Sabine Brodbeck
    • 1
  • Rolf Holderegger
    • 1
  1. 1.Ecological Genetics and EvolutionWSL Swiss Federal Research InstituteBirmensdorfSwitzerland

Personalised recommendations