Advertisement

Conservation of Nuclear SSR Loci Reveals High Affinity of Quercus infectoria ssp. veneris A. Kern (Fagaceae) to Section Robur

  • Ch. Neophytou
  • A. Dounavi
  • F. A. Aravanopoulos
Article

Abstract

Conservation of 16 nuclear microsatellite loci, originally developed for Quercus macrocarpa (section Albae), Q. petraea, Q. robur (section Robur), and Q. myrsinifolia, (subgenus Cyclobalanopsis) was tested in a Q. infectoria ssp. veneris population from Cyprus. All loci could be amplified successfully and displayed allele size and diversity patterns that match those of oak species belonging to the section Robur. At least in one case, limited amplification and high levels of homozygosity support the occurrence of “null alleles” caused by a possible mutation in the highly conserved primer areas, thus hindering PCR. The sampled population exhibited high levels of diversity despite the very limited distribution of this species in Cyprus and extended population fragmentation. Allele sizes of Q. infectoria at locus QpZAG9 partially match those of Q. alnifolia and Q. coccifera from neighboring populations. However, sequencing showed homoplasy, excluding a case of interspecific introgression with the latter, phylogenetically remote species. Q. infectoria ssp. veneris sequences at this locus were concordant to those of other species of section Robur, while sequences of Quercus alnifolia and Quercus coccifera were almost identical to Q. cerris.

Keywords

Gall oak Microsatellites Allelic richness Homoplasy Phylogeny 

Notes

Acknowledgments

We are grateful to Constantinos Kounnamas and Costas Kadis for their advice and assistance during planning and carrying out the collections. This research was conducted in partial fulfilment for the degree of the Albert-Ludwigs University of Freiburg regarding the senior author.

References

  1. Axelrod DI. Biogeography of oaks in the Arcto-Tertiary province. Ann Missouri Bot Gard. 1983;70:629–57.CrossRefGoogle Scholar
  2. Barbéro M, Quézel P. Contribution à l’ étude des groupements forestiers de Chypre. Doc phytosociologiques. 1979;IV:9–34.Google Scholar
  3. Barreneche T, Bodenes C, et al. A genetic linkage map of Quercus robur L. (pedunculate oak) based on RAPD, SCAR, microsatellite, minisatellite, isozyme and 5S rDNA markers. Theor Appl Gen. 1998;97:1090–103.CrossRefGoogle Scholar
  4. Boavida LC, Silva JP, et al. Sexual reproduction in the cork oak (Quercus suber L). II. Crossing intra- and interspecific barriers. Sex Pl Reprod. 2001;14:143–52.CrossRefGoogle Scholar
  5. Camus A. Les chênes. Paris: Lechevallier; 1938.Google Scholar
  6. Christou A (2000). Cyprus, Country Report. Presented in EUFORGEN Mediterranean Oak Network, Antalya 12–14 October 2000.Google Scholar
  7. Curtu AL, Finkeldey R, et al. Comparative sequencing of a microsatellite locus reveals size homoplasy within and between European oak species (Quercus spp.). Plant Mol Biol Report. 2004;22:339–46.CrossRefGoogle Scholar
  8. Dow BD, Ashley MV, Howe HR. Characterization of highly variable (GA/CT)n microsatellites in the bur oak, Quercus macrocarpa. Theor Appl Genet. 1995;91:137–41.CrossRefGoogle Scholar
  9. Dumolin S, Demesure B, Petit RJ. Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theor Appl Genet. 1995;91:1253–76.CrossRefGoogle Scholar
  10. Hornero J, Gallego FJ, et al. Testing the conservation of Quercus spp. microsatellites in the cork oak, Q. suber L. Silvae Genetica. 2001;50:162–7.Google Scholar
  11. Isagi Y, Suhandono S. PCR primers amplifying microsatellite loci of Quercus myrsinifolia Blume and their conservation between oak species. Mol Ecol. 1997;6:897–9.PubMedCrossRefGoogle Scholar
  12. Kampfer S, Lexer C, et al. Characterization of (GA)n microsatellite loci from Quercus robur. Hereditas. 1998;129:183–6.CrossRefGoogle Scholar
  13. Krüssmann G. Handbuch der Laubgehölze. Berlin: Paul Parey; 1978.Google Scholar
  14. Manos PS, Doyle JJ, et al. Phylogeny, biogeography, and processes of molecular differentiation in Quercus subgenus Quercus (Fagaceae). Mol Phylogenet Evol. 1999;12:333–49.PubMedCrossRefGoogle Scholar
  15. Meikle RD. Flora of Cyprus. London: Bentham Moxon Trust, Royal Botanic Gardens; 1977.Google Scholar
  16. Meikle RD. Flora of Cyprus. London: Bentham Moxon Trust, Royal Botanic Gardens; 1985.Google Scholar
  17. Nimri LF, Meqdam MM, et al. Antibacterial activity of Jordanian medicinal plants. Pharm Biol. 1999;37:196–201.CrossRefGoogle Scholar
  18. Schirone B, Spada F (2000). Some remarks on the conservation of genetic resources of Meditderranean oaks. Presented in EUFORGEN—Mediterranean Oaks Network, Antalya 12–14 October 2000.Google Scholar
  19. Schwarz O. Entwurf einem naturlichen system der Culpuliferen und der Gattung Quercus L. Notizbl Bot Gart Berlin. 1936;13:1–22.CrossRefGoogle Scholar
  20. Schwarz, O. Quercus L. In: Tutin TG, Burger VH, Valentine DH, Walters SM, Webb DA, editors. Flora Europea, vol. I, 2nd ed. Cambridge, UK: Cambridge University Press; 1993.Google Scholar
  21. Scotti-Saintagne C, Mariette S, et al. Genome scanning for interspecific differentiation between two closely related oak species [Quercus robur L. and Q petraea (Matt.) Liebl.]. Genetics. 2004;168:1615–26.PubMedCrossRefGoogle Scholar
  22. Soto A, Lorenz Z, et al. Nuclear microsatellite markers for the identification of Quercus ilex L. and Q. suber L. hybrids. Silvae Genetica. 2003;52:63–6.Google Scholar
  23. Steinkellner H, Lexer C, et al. Conservation of (GA)(n) microsatellite loci between Quercus species. Mol Ecol. 1997a;6:1189–94.CrossRefGoogle Scholar
  24. Steinkellner H, Fluch S, et al. Identification and characterization of (GA/CT)n-microsatellite loci from Quercus petraea. Pl Mol Biol. 1997b;33:1093–6.CrossRefGoogle Scholar
  25. Vornam B, Decarli N, et al. Spatial distribution of genetic variation in a natural beech stand (Fagus sylvatica L.) based on microsatellite markers. Conserv Gen. 2004;5:561–70.CrossRefGoogle Scholar
  26. Yeh, F. Boyle, TJB et al. Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belg J Bot. 1997;129:157.Google Scholar
  27. Zhou ZK. Origin, phylogeny and dispersal of Quercus from China. Acta Bot Yunnanica. 1992;14:227–36.Google Scholar
  28. Zohary M. Geobotanical foundations of the Middle East. Stuttgart: Gustav Fischer; 1973.Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Ch. Neophytou
    • 1
  • A. Dounavi
    • 1
  • F. A. Aravanopoulos
    • 2
  1. 1.Forest Research Institute–Baden-WürttembergFreiburgGermany
  2. 2.Faculty for Forestry and Natural EnvironmentAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations