Skip to main content

Advertisement

Log in

Litter decomposition rate and nutrient dynamics of giant ragweed (Ambrosia trifida L.) in the non-native habitat of South Korea

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aim

Ambrosia trifida L. is designated as an invasive exotic plants in South Korea. Despite its widespread distribution in South Korea, research on A. trifida is limited. Organic matter input by A. trifida litter decomposition is predicted to change the soil environment. In this study, we investigated the effects of A. trifida litter decomposition on soil nutrient status.

Methods

We used the litterbag method to investigate the decomposition rate, decay constant (k), carbon/nitrogen (C/N) ratio, and nutrient dynamics of A. trifida litter during decomposition.

Results

The decay constants (k) of leaf, stem, and root litter after 11 months of decomposition were 1.93, 1.47, and 1.28, respectively. After 22 months of decomposition, the decay constants (k) of leaf, stem, and root litter were 1.01, 0.99 and 1.84, respectively. After 22 months, approximately 85% of organic matter, 79% of nitrogen (N), 98% of phosphorus (P), 96% of potassium (K), 96% of magnesium (Mg), and 69% of calcium (Ca) were returned to the soil.

Conclusion

Our results provide key insights into the nutrients exchange between A. trifida and soil. Given the biological characteristics of A. trifida, the input of a large amount of organic matter to the soil and the nutrients released through the decomposition of this organic matter are expected to enhance the growth and nutrient absorption of A. trifida in invaded areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abul-Fatih H, Bazzaz F, Hunt R (1979a) The biology of Ambrosia trifida L. III. Growth and biomass allocation. New Phytol 83:829–838

    Google Scholar 

  • Abul-Fatih HA, Bazzaz FA, Hunt R (1979b) The biology of Ambrosia trifida L. I. Influence of species removal on the organizatioin of the plant community. New Phytol 83:829–838. https://doi.org/10.1111/j.1469-8137.1979.tb02314.x

    Article  Google Scholar 

  • Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449. https://doi.org/10.2307/3546886

    Article  Google Scholar 

  • Alhamd L, Arakaki S, Hagihara A (2004) Decomposition of leaf litter of four tree species in a subtropical evergreen broad-leaved forest, Okinawa Island, Japan. For Ecol Manag 202:1–11. https://doi.org/10.1016/j.foreco.2004.02.062

    Article  Google Scholar 

  • Allison SD, Vitousek PM (2004) Rapid nutrient cycling in leaf litter from invasive plants in Hawai’i. Oecologia 141:612–619. https://doi.org/10.1007/s00442-004-1679-z

    Article  PubMed  Google Scholar 

  • Aponte C, García LV, Marañón T (2012) Tree species effect on litter decomposition and nutrient release in Mediterranean oak forests changes over time. Ecosystems 15:1204–1218

    CAS  Google Scholar 

  • Asplund J, Hustoft E, Nybakken L, Ohlson M, Lie MH (2018) Litter impair spruce seedling emergence in beech forests: a litter manipulation experiment. Scand J For Res 33:332–337. https://doi.org/10.1080/02827581.2017.1388440

    Article  Google Scholar 

  • Austin AT, Ballaré CL (2010) Dual role of lignin in plant litter decomposition in terrestrial ecosystems. Proc Natl Acad Sci:20090936. https://doi.org/10.1073/pnas.0909396107

  • Baker TT, Lockaby BG, Conner WH, Meier CE, Stanturf JA, Burke MK (2001) Leaf litter decomposition and nutrient dynamics in four southern forested floodplain communities. Soil Sci Soc Am J 65:1334–1347

    CAS  Google Scholar 

  • Balogh L, Botta-Dukát Z, Dancza I (2003) What kind of plants are invasive in Hungary. Plant invasions: ecological threats and management solutions. Backhuys Publishers, Leiden, pp 131–146

    Google Scholar 

  • Barnett KA, Steckel LE (2013) Giant ragweed (Ambrosia trifida) competition in cotton. Weed Sci 61:543–548. https://doi.org/10.1614/WS-D-12-00169.1

    Article  CAS  Google Scholar 

  • Baruch Z, Goldstein G (1999) Leaf construction cost, nutrient concentration, and net CO2 assimilation of native and invasive species in Hawaii. Oecologia 121:183–192. https://doi.org/10.1007/s004420050920

    Article  CAS  PubMed  Google Scholar 

  • Bending GD, Read DJ (1995) The structure and function of the vegetative mycelium of ectomycorrhizal plants. New Phytol 130:401–409

    CAS  Google Scholar 

  • Bennett AE, Thomsen M, Strauss SY (2011) Multiple mechanisms enable invasive species to suppress native species. Am J Bot 98:1086–1094

    PubMed  Google Scholar 

  • Berg B (2000) Litter decomposition and organic matter turnover in northern forest soils. For Ecol Manag 133:13–22. https://doi.org/10.1016/S0378-1127(99)00294-7

    Article  Google Scholar 

  • Berg B (2006) Litter decomposition : a guide to carbon and nutrient turnover/ by Bjorn Berg, Ryszard Laskowski. Academic, Amsterdam

    Google Scholar 

  • Berg B, Staaf H (1981) Leaching, accumulation and release of nitrogen in decomposing forest litter. Ecol Bull 33:163–178

    CAS  Google Scholar 

  • Cadotte MW, Hamilton MA, Murray BR (2009) Phylogenetic relatedness and plant invader success across two spatial scales. Divers Distrib 15:481–488. https://doi.org/10.1111/j.1472-4642.2009.00560.x

    Article  Google Scholar 

  • Carson WP, Peterson CJ (1990) The role of litter in an old-field community: impact of litter quantity in different seasons on plant species richness and abundance. Oecologia 85:8–13. https://doi.org/10.1007/bf00317337

    Article  PubMed  Google Scholar 

  • Chen B-M, D’Antonio CM, Molinari N, Peng S-L (2018) Mechanisms of influence of invasive grass litter on germination and growth of coexisting species in California. Biol Invasions 20:1881–1897. https://doi.org/10.1007/s10530-018-1668-5

    Article  Google Scholar 

  • Choi H-J, Lim S-H, Kim K-H, Kim S (2007) Distribution of Giant ragweed (Ambrosia trifida L.) at northwest of Gangwon, Korea. Kor J Weed Sci 27:241–247

    Google Scholar 

  • Corbin JD, D’Antonio CM (2012) Gone but not forgotten? Invasive plants' legacies on community and ecosystem properties. Invasive Plant Sci Manag 5:117–124

    Google Scholar 

  • Cornelissen JHC, Thompson K (1997) Functional leaf attributes predict litter decomposition rate in herbaceous plants. New Phytol 135:109–114. https://doi.org/10.1046/j.1469-8137.1997.00628.x

    Article  PubMed  Google Scholar 

  • Cotrufo MF, Soong JL, Horton AJ, Campbell EE, Haddix Michelle L, Wall DH, Parton WJ (2015) Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nat Geosci 8:776. https://doi.org/10.1038/ngeo2520. https://www.nature.com/articles/ngeo2520#supplementary-information

    Article  CAS  Google Scholar 

  • Coûteaux M-M, Bottner P, Berg B (1995) Litter decomposition, climate and liter quality. Trends Ecol Evol 10:63–66. https://doi.org/10.1016/S0169-5347(00)88978-8

    Article  PubMed  Google Scholar 

  • D’Antonio C, Meyerson LA (2002) Exotic plant species as problems and solutions in ecological restoration: a synthesis. Restor Ecol 10:703–713. https://doi.org/10.1046/j.1526-100X.2002.01051.x

    Article  Google Scholar 

  • Damasceno G, Souza L, Pivello VR, Gorgone-Barbosa E, Giroldo PZ, Fidelis A (2018) Impact of invasive grasses on Cerrado under natural regeneration. Biol Invasions 20:3621–3629. https://doi.org/10.1007/s10530-018-1800-6

    Article  Google Scholar 

  • Davies KW (2011) Plant community diversity and native plant abundance decline with increasing abundance of an exotic annual grass. Oecologia 167:481–491. https://doi.org/10.1007/s00442-011-1992-2

    Article  PubMed  Google Scholar 

  • Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–534. https://doi.org/10.1046/j.1365-2745.2000.00473.x

    Article  Google Scholar 

  • Dickson TL, Hopwood JL, Wilsey BJ (2012) Do priority effects benefit invasive plants more than native plants? An experiment with six grassland species. Biol Invasions 14:2617–2624

    Google Scholar 

  • Djukic I, Kepfer-Rojas S, Schmidt IK, Larsen KS, Beier C, Berg B, Verheyen K, Caliman A, Paquette A, Gutiérrez-Girón A, Humber A, Valdecantos A, Petraglia A, Alexander H, Augustaitis A, Saillard A, Fernández ACR, Sousa AI, Lillebø AI, da Rocha GA, Francez A-J, Fischer A, Bohner A, Malyshev A, Andrić A, Smith A, Stanisci A, Seres A, Schmidt A, Avila A, Probst A, Ouin A, Khuroo AA, Verstraeten A, Palabral-Aguilera AN, Stefanski A, Gaxiola A, Muys B, Bosman B, Ahrends B, Parker B, Sattler B, Yang B, Juráni B, Erschbamer B, Ortiz CER, Christiansen CT, Carol Adair E, Meredieu C, Mony C, Nock CA, Chen C-L, Wang C-P, Baum C, Rixen C, Delire C, Piscart C, Andrews C, Rebmann C, Branquinho C, Polyanskaya D, Delgado DF, Wundram D, Radeideh D, Ordóñez-Regil E, Crawford E, Preda E, Tropina E, Groner E, Lucot E, Hornung E, Gacia E, Lévesque E, Benedito E, Davydov EA, Ampoorter E, Bolzan FP, Varela F, Kristöfel F, Maestre FT, Maunoury-Danger F, Hofhansl F, Kitz F, Sutter F, Cuesta F, de Almeida LF, de Souza FL, Berninger F, Zehetner F, Wohlfahrt G, Vourlitis G, Carreño-Rocabado G, Arena G, Pinha GD, González G, Canut G, Lee H, Verbeeck H, Auge H, Pauli H, Nacro HB, Bahamonde HA, Feldhaar H, Jäger H, Serrano HC, Verheyden H, Bruelheide H, Meesenburg H, Jungkunst H, Jactel H, Shibata H, Kurokawa H, Rosas HL, Rojas Villalobos HL, Yesilonis I, Melece I, Van Halder I, Quirós IG, Makelele I, Senou I, Fekete I, Mihal I, Ostonen I, Borovská J, Roales J, Shoqeir J, Lata J-C, Theurillat J-P, Probst J-L, Zimmerman J, Vijayanathan J, Tang J, Thompson J, Doležal J, Sanchez-Cabeza J-A, Merlet J, Henschel J, Neirynck J, Knops J, Loehr J, von Oppen J, Þorláksdóttir JS, Löffler J, Cardoso-Mohedano J-G, Benito-Alonso J-L, Torezan JM, Morina JC, Jiménez JJ, Quinde JD, Alatalo J, Seeber J, Stadler J, Kriiska K, Coulibaly K, Fukuzawa K, Szlavecz K, Gerhátová K, Lajtha K, Käppeler K, Jennings KA, Tielbörger K, Hoshizaki K, Green K, Yé L, Pazianoto LHR, Dienstbach L, Williams L, Yahdjian L, Brigham LM, van den Brink L, Rustad L, Zhang L, Morillas L, Xiankai L, Carneiro LS, Di Martino L, Villar L, Bader MY, Morley M, Lebouvier M, Tomaselli M, Sternberg M, Schaub M, Santos-Reis M, Glushkova M, Torres MGA, Giroux M-A, de Graaff M-A, Pons M-N, Bauters M, Mazón M, Frenzel M, Didion M, Wagner M, Hamid M, Lopes ML, Apple M, Schädler M, Weih M, Gualmini M, Vadeboncoeur MA, Bierbaumer M, Danger M, Liddell M, Mirtl M, Scherer-Lorenzen M, Růžek M, Carbognani M, Di Musciano M, Matsushita M, Zhiyanski M, Pușcaș M, Barna M, Ataka M, Jiangming M, Alsafran M, Carnol M, Barsoum N, Tokuchi N, Eisenhauer N, Lecomte N, Filippova N, Hölzel N, Ferlian O, Romero O, Pinto OB, Peri P, Weber P, Vittoz P, Turtureanu PD, Fleischer P, Macreadie P, Haase P, Reich P, Petřík P, Choler P, Marmonier P, Muriel P, Ponette Q, Guariento RD, Canessa R, Kiese R, Hewitt R, Rønn R, Adrian R, Kanka R, Weigel R, Gatti RC, Martins RL, Georges R, Meneses RI, Gavilán RG, Dasgupta S, Wittlinger S, Puijalon S, Freda S, Suzuki S, Charles S, Gogo S, Drollinger S, Mereu S, Wipf S, Trevathan-Tackett S, Löfgren S, Stoll S, Trogisch S, Hoeber S, Seitz S, Glatzel S, Milton SJ, Dousset S, Mori T, Sato T, Ise T, Hishi T, Kenta T, Nakaji T, Michelan TS, Camboulive T, Mozdzer TJ, Scholten T, Spiegelberger T, Zechmeister T, Kleinebecker T, Hiura T, Enoki T, Ursu T-M, di Cella UM, Hamer U, Klaus VH, Rêgo VM, Di Cecco V, Busch V, Fontana V, Piscová V, Carbonell V, Ochoa V, Bretagnolle V, Maire V, Farjalla V, Zhou W, Luo W, McDowell WH, Hu Y, Utsumi Y, Kominami Y, Zaika Y, Rozhkov Y, Kotroczó Z, Tóth Z (2018) Early stage litter decomposition across biomes. Sci Total Environ 628-629:1369–1394. https://doi.org/10.1016/j.scitotenv.2018.01.012

    Article  CAS  PubMed  Google Scholar 

  • Dukes JS, Mooney HA (1999) Does global change increase the success of biological invaders? Trends Ecol Evol 14:135–139

    CAS  PubMed  Google Scholar 

  • Dziadowiec H (1987) The decomposition of plant litter fall in an oak-linden-hornbeam forest and an oak-pine mixed forest of the Białowieża National Park. Acta Soc Bot Pol 56:169–185

    Google Scholar 

  • Early R, Bradley BA, Dukes JS, Lawler JJ, Olden JD, Blumenthal DM, Gonzalez P, Grosholz ED, Ibañez I, Miller LP, Sorte CJB, Tatem AJ (2016) Global threats from invasive alien species in the twenty-first century and national response capacities. Nat Commun 7:12485. https://doi.org/10.1038/ncomms12485. https://www.nature.com/articles/ncomms12485#supplementary-information

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6:503–523. https://doi.org/10.1007/s10021-002-0151-3

    Article  CAS  Google Scholar 

  • Enright NJ, Ogden J (1987) Decomposition of litter from common woody species of kauri (Agathis australis Salisb.) forest in northern New Zealand. Aust J Ecol 12:109–124. https://doi.org/10.1111/j.1442-9993.1987.tb00933.x

    Article  Google Scholar 

  • Facelli JM (1994) Multiple indirect effects of plant litter affect the establishment of Woody seedlings in old fields. Ecology 75:1727–1735. https://doi.org/10.2307/1939632

    Article  Google Scholar 

  • Facelli JM, Pickett STA (1991) Plant litter: its dynamics and effects on plant community structure. Bot Rev 57:1–32. https://doi.org/10.1007/bf02858763

    Article  Google Scholar 

  • Farrer EC, Goldberg DE (2009) Litter drives ecosystem and plant community changes in cattail invasion. Ecol Appl 19:398–412. https://doi.org/10.1890/08-0485.1

    Article  PubMed  Google Scholar 

  • Freschet GT, Aerts R, Cornelissen JHC (2012) A plant economics spectrum of litter decomposability. Funct Ecol 26:56–65. https://doi.org/10.1111/j.1365-2435.2011.01913.x

    Article  Google Scholar 

  • Freschet GT, Cornwell WK, Wardle DA, Elumeeva TG, Liu W, Jackson BG, Onipchenko VG, Soudzilovskaia NA, Tao J, Cornelissen JHC (2013) Linking litter decomposition of above- and below-ground organs to plant–soil feedbacks worldwide. J Ecol 101:943–952. https://doi.org/10.1111/1365-2745.12092

    Article  CAS  Google Scholar 

  • Gaertner M, Biggs R, Beest MT, Hui C, Molofsky J, Richardson DM (2014) Invasive plants as drivers of regime shifts: identifying high-priority invaders that alter feedback relationships. Divers Distrib 20:733–744. https://doi.org/10.1111/ddi.12182

    Article  Google Scholar 

  • González G, Seastedt TR (2001) Soil fauna and plant litter decomposition in tropical and subalpine forests. Ecology 82:955–964. https://doi.org/10.1890/0012-9658(2001)082[0955:Sfapld]2.0.Co;2

    Article  Google Scholar 

  • Gosz JR, Likens GE, Bormann FH (1973) Nutrient release from decomposing leaf and branch litter in the Hubbard brook Forest, New Hampshire. Ecol Monogr 43:173–191

    Google Scholar 

  • Gulis V, Suberkropp K (2003) Leaf litter decomposition and microbial activity in nutrient-enriched and unaltered reaches of a headwater stream. Freshw Biol 48:123–134

    Google Scholar 

  • Hättenschwiler S, Gasser P (2005) Soil animals alter plant litter diversity effects on decomposition. Proc Natl Acad Sci U S A 102:1519–1524. https://doi.org/10.1073/pnas.0404977102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heneghan L, Fatemi F, Umek L, Grady K, Fagen K, Workman M (2006) The invasive shrub European buckthorn (Rhamnus cathartica, L.) alters soil properties in Midwestern US woodlands. Appl Soil Ecol 32:142–148

    Google Scholar 

  • Hess MC, Mesléard F, Buisson E (2019) Priority effects: emerging principles for invasive plant species management. Ecol Eng 127:48–57

    Google Scholar 

  • Hobbie SE (2015) Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends Ecol Evol 30:357–363. https://doi.org/10.1016/j.tree.2015.03.015

    Article  PubMed  Google Scholar 

  • Hobbie SE, Vitousek PM (2000) Nutrient limitation of decomposition in Hawaian forests. Ecology 81:1867–1877. https://doi.org/10.1890/0012-9658(2000)081[1867:NLODIH]2.0.CO;2

    Article  Google Scholar 

  • Hobbie SE, Oleksyn J, Eissenstat DM, Reich PB (2010) Fine root decomposition rates do not mirror those of leaf litter among temperate tree species. Oecologia 162:505–513. https://doi.org/10.1007/s00442-009-1479-6

    Article  PubMed  Google Scholar 

  • Holdredge C, Bertness MD (2011) Litter legacy increases the competitive advantage of invasive Phragmites australis in New England wetlands. Biol Invasions 13:423–433

    Google Scholar 

  • Jia C, Huang Z, Miao H-T, Lu R, Li J, Liu Y, Shen W, He H, Wu G-L (2018) Litter crusts promote herb species formation by improving surface microhabitats in a desert ecosystem. Catena 171:245–250

    Google Scholar 

  • Jiang L, Yue K, Yang Y, Wu Q (2016) Leaching and freeze-thaw events contribute to litter decomposition-a review. Sains Malaysiana 45:1041–1047

    CAS  Google Scholar 

  • Jo I, Fridley JD, Frank DA (2017) Invasive plants accelerate nitrogen cycling: evidence from experimental woody monocultures. J Ecol 105:1105–1110. https://doi.org/10.1111/1365-2745.12732

    Article  CAS  Google Scholar 

  • Johnson WG, Ott EJ, Gibson KD, Nielsen RL, Bauman TT (2007) Influence of nitrogen application timing on low density giant ragweed (Ambrosia trifida) interference in corn. Weed Technol 21:763–767. https://doi.org/10.1614/WT-06-171.1

    Article  CAS  Google Scholar 

  • Jung IW, Bae DH, Kim G (2011) Recent trends of mean and extreme precipitation in Korea. Int J Climatol 31:359–370

    Google Scholar 

  • Kang BH, Shim SI, Lee SG, Kim KH, Chung IM (1998) Evaluation of Ambrosia artemisiifolia var. elatior, Ambrosia trifida, Rumex crispus for phytoremediation of Cu and Cd contaminated soil. Kor J Weed Sci 18:262–267

    Google Scholar 

  • Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170. https://doi.org/10.1016/S0169-5347(02)02499-0

    Article  Google Scholar 

  • Keyport S, Carson BD, Johnson O, Lawrence BA, Lishawa SC, Tuchman NC, Kelly JJ (2019) Effects of experimental harvesting of an invasive hybrid cattail on wetland structure and function. Restor Ecol 27:389–398

    Google Scholar 

  • Kil JH, Shim KC, Park SH, Koh KS, Suh MH, Ku YB, Suh SU, Oh HK, Kong HY (2004) Distributions of naturalized alien plants in South Korea. Weed Technol 18:1493–1495

    Google Scholar 

  • Kim KD (2017) Distribution and management of the invasive exotic species Ambrosia trifida and Sicyos angulatus in the Seoul metropolitan area. Journal of Ecological Engineering 18:27–36. https://doi.org/10.12911/22998993/76216

    Article  CAS  Google Scholar 

  • Kim KH, Kang SH (2019) Flora of Western civilian control zone (CCZ) in Korea. Korean Journal of Plant Resources 32:565–588

    Google Scholar 

  • Kim E, Kim M, Lee S, Hong YS, Lee E, Park J, Lee S, Cho K, You Y (2018) Impact of Ambrosia trifida L. (invasive plant) on the plant diversity and performance of Polygonatum stenophyllum maxim. (near threatended) and managmenet suggestion for the habitat conservation. Journal of Wetlands Research 20:249–255

    Google Scholar 

  • Langley JA, Hungate BA (2003) Mycorrhizal controls on belowground litter quality. Ecology 84:2302–2312. https://doi.org/10.1890/02-0282

    Article  Google Scholar 

  • Lee IY, Park J, Oh SM, Park JE, Kwon O (2007) Selection of insects for potential biological control of Ambrosia trifida. Kor J Weed Sci 27:309–317

    Google Scholar 

  • Lee CS, Cho YC, Shin HC, Kim GS, Pi JH (2010) Control of an invasive alien species, Ambrosia trifida with restoration by introducing willows as a typical riparian vegetation. Journal of Ecology and Field Biology 33:157–164. https://doi.org/10.5141/JEFB.2010.33.2.157

    Article  Google Scholar 

  • Lee SH, Choi SS, Lee DB, Hwang SH, Ahn JK (2016) The Flora of vascular plants in the west side of DMZ area. Korean Journal of Environment and Ecology 30:1–18

    CAS  Google Scholar 

  • Liu Y, Liu M, Xu X, Tian Y, Zhang Z, van Kleunen M (2018) The effects of changes in water and nitrogen availability on alien plant invasion into a stand of a native grassland species. Oecologia. 188:441–450. https://doi.org/10.1007/s00442-018-4216-1

    Article  PubMed  Google Scholar 

  • Lu XR, Liu T, Wang R, Wang H, Duan YX (2016) Impacts of leaf litter decomposition of invasive plant Ambrosia trifida on soil nematode community structure. Chinese Journal of Ecology 35:2369–2378. https://doi.org/10.13292/j.1000-4890.201609.012

    Article  Google Scholar 

  • Mariotte P, Spotswood EN, Farrer EC, Suding KN (2017) Positive litter feedbacks of an introduced species reduce native diversity and promote invasion in Californian grasslands. Appl Veg Sci 20:28–39

    Google Scholar 

  • Maron JL, Vilà M (2001) When do herbivores affect plant invasion? Evidence for the natural enemies and biotic resistance hypotheses. Oikos 95:361–373. https://doi.org/10.1034/j.1600-0706.2001.950301.x

    Article  Google Scholar 

  • Medina-Villar S, Castro-Díez P, Alonso A, Cabra-Rivas I, Parker IM, Pérez-Corona E (2015) Do the invasive trees, Ailanthus altissima and Robinia pseudoacacia, alter litterfall dynamics and soil properties of riparian ecosystems in Central Spain? Plant Soil 396:311–324. https://doi.org/10.1007/s11104-015-2592-4

    Article  CAS  Google Scholar 

  • Meier CL, Bowman WD (2008) Links between plant litter chemistry, species diversity, and below-ground ecosystem function. Proc Natl Acad Sci 105:19780–19785. https://doi.org/10.1073/pnas.0805600105

    Article  PubMed  PubMed Central  Google Scholar 

  • Meisner A, De Boer W, Cornelissen JH, van der Putten WH (2012) Reciprocal effects of litter from exotic and congeneric native plant species via soil nutrients. PLoS One 7:e31596

    CAS  PubMed  PubMed Central  Google Scholar 

  • Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–626

    CAS  Google Scholar 

  • Mfilinge P, Atta N, Tsuchiya M (2002) Nutrient dynamics and leaf litter decomposition in a subtropical mangrove forest at Oura Bay, Okinawa, Japan. Trees 16:172–180

    CAS  Google Scholar 

  • Montagnani C, Gentili R, Smith M, Guarino M, Citterio S (2017) The worldwide spread, success, and impact of ragweed (Ambrosia spp.). Crit Rev Plant Sci 36:139–178

    Google Scholar 

  • Moore JC, Berlow EL, Coleman DC, Ruiter PC, Dong Q, Hastings A, Johnson NC, McCann KS, Melville K, Morin PJ, Nadelhoffer K, Rosemond AD, Post DM, Sabo JL, Scow KM, Vanni MJ, Wall DH (2004) Detritus, trophic dynamics and biodiversity. Ecol Lett 7:584–600. https://doi.org/10.1111/j.1461-0248.2004.00606.x

    Article  Google Scholar 

  • Moro MJ, Domingo F (2000) Litter decomposition in four Woody species in a Mediterranean climate: weight loss, N and P dynamics. Ann Bot 86:1065–1071. https://doi.org/10.1006/anbo.2000.1269

    Article  CAS  Google Scholar 

  • Morris KA, Stark JM, Bugbee B, Norton JM (2016) The invasive annual cheatgrass releases more nitrogen than crested wheatgrass through root exudation and senescence. Oecologia 181:971–983. https://doi.org/10.1007/s00442-015-3544-7

    Article  PubMed  Google Scholar 

  • Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–331. https://doi.org/10.2307/1932179

    Article  Google Scholar 

  • Olson BE, Wallander RT (2002) Effects of invasive forb litter on seed germination, seedling growth and survival. Basic Appl Ecol 3:309–317

    Google Scholar 

  • Osono T, Takeda H (2004) Potassium, calcium, and magnesium dynamics during litter decomposition in a cool temperate forest. J For Res 9:23–31. https://doi.org/10.1007/s10310-003-0047-x

    Article  CAS  Google Scholar 

  • Park EJ, Nam MA (2013) Changes in land cover and the cultivation area of ginseng in the civilian control zone -Paju city and Yeoncheon county. Korean Journal of Environment and Ecology 27:507–515

    Google Scholar 

  • Park HC, Lim JC, Lee JH, Lee GG (2017) Predicting the potential distributions of invasive species using the landsat imagery and Maxent: Focused on "Ambrosia trifida L. var. " in Korean Demilitarized Zone. Journal of Korean Envrionmental Restoration Technology 20:1–12

    Google Scholar 

  • Petersen RC, Cummins KW (1974) Leaf processing in a woodland stream. Freshw Biol 4:343–368

    Google Scholar 

  • Pickett B, Irvine IC, Bullock E, Arogyaswamy K, Aronson E (2019) Legacy effects of invasive grass impact soil microbes and native shrub growth. Invasive Plant Sci Manag 12:22–35

    Google Scholar 

  • Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52:273–288. https://doi.org/10.1016/j.ecolecon.2004.10.002

    Article  Google Scholar 

  • Plaster E (2013) Soil science and management. Cengage learning, Melbourne

    Google Scholar 

  • Pyšek P, Jarošík V, Hulme PE, Pergl J, Hejda M, Schaffner U, Vilà M (2012) A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species' traits and environment. Glob Chang Biol 18:1725–1737. https://doi.org/10.1111/j.1365-2486.2011.02636.x

    Article  PubMed Central  Google Scholar 

  • R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Reich PB, Oleksyn J, Modrzynski J, Mrozinski P, Hobbie SE, Eissenstat DM, Chorover J, Chadwick OA, Hale CM, Tjoelker MG (2005) Linking litter calcium, earthworms and soil properties: a common garden test with 14 tree species. Ecol Lett 8:811–818. https://doi.org/10.1111/j.1461-0248.2005.00779.x

    Article  Google Scholar 

  • Ruhland CT, Remund AJ, Tiry CM, Secott TE (2018) Litter decomposition of three lignin-deficient mutants of Sorghum bicolor during spring thaw. Acta Oecol 91:16–21. https://doi.org/10.1016/j.actao.2018.05.009

    Article  Google Scholar 

  • Rutigliano FA, Alfani A, Bellini L, De Santo AV (1998) Nutrient dynamics in decaying leaves of Fagus sylvatica L. and needles of Abies alba mill. Biol Fertil Soils 27:119–126

    CAS  Google Scholar 

  • Salamanca EF, Kaneko N, Katagiri S, Nagayama Y (1998) Nutrient dynamics and lignocellulose degradation in decomposing Quercus serrata leaf litter. Ecol Res 13:199–210. https://doi.org/10.1046/j.1440-1703.1998.00258.x

    Article  CAS  Google Scholar 

  • Sardans J, Peñuelas J (2012) The role of plants in the effects of global change on nutrient availability and stoichiometry in the plant-soil system. Plant Physiol 160:1741–1761. https://doi.org/10.1104/pp.112.208785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sardans J, Bartrons M, Margalef O, Gargallo-Garriga A, Janssens IA, Ciais P, Obersteiner M, Sigurdsson BD, Chen HY, Peñuelas J (2017) Plant invasion is associated with higher plant–soil nutrient concentrations in nutrient-poor environments. Glob Chang Biol 23:1282–1291

    PubMed  Google Scholar 

  • Setälä H, Huhta V (1990) Evaluation of the soil fauna impact on decomposition in a simulated coniferous forest soil. Biol Fertil Soils 10:163–169. https://doi.org/10.1007/bf00336130

    Article  Google Scholar 

  • Simberloff D, Von Holle B (1999) Positive interactions of nonindigenous species: Invasional meltdown? Biol Invasions 1:21–32. https://doi.org/10.1023/a:1010086329619

    Article  Google Scholar 

  • Smith SD, Huxman TE, Zitzer SF, Charlet TN, Housman DC, Coleman JS, Fenstermaker LK, Seemann JR, Nowak RS (2000) Elevated CO2 increases productivity and invasive species success in an arid ecosystem. Nature 408:79–82. https://doi.org/10.1038/35040544

    Article  CAS  PubMed  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM, Anderson J (1979) Decomposition in terrestrial ecosystems. Univ of California Press, Berkeley

    Google Scholar 

  • Taylor BR, Parkinson D (1988) Does repeated freezing and thawing accelerate decay of leaf litter? Soil Biol Biochem 20:657–665. https://doi.org/10.1016/0038-0717(88)90150-2

    Article  Google Scholar 

  • Taylor BR, Parkinson D, Parsons WFJ (1989) Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology 70:97–104. https://doi.org/10.2307/1938416

    Article  Google Scholar 

  • Theodore MW, Mark ML, Emilie ER, Harrison SK (1994) Giant ragweed (Ambrosia trifida) canopy architecture and interference studies in soybean (Glycine max). Weed Technol 8:559–564

    Google Scholar 

  • Tilman D (1980) Resources: a graphical-mechanistic approach to competition and predation. Am Nat 116:362–393. https://doi.org/10.1086/283633

    Article  Google Scholar 

  • Twilley RR, Pozo M, Garcia VH, Rivera-Monroy VH, Zambrano R, Bodero A (1997) Litter dynamics in riverine mangrove forests in the Guayas River estuary, Ecuador. Oecologia 111:109–122

    PubMed  Google Scholar 

  • Veen C, Fry E, ten Hooven F, Kardol P, Morriën E, De Long JR (2019) The role of plant litter in driving plant-soil feedbacks. Front Environ Sci 7:168

    Google Scholar 

  • Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošík V, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702–708. https://doi.org/10.1111/j.1461-0248.2011.01628.x

    Article  PubMed  Google Scholar 

  • Vitousek PM, D’Antonio CM, Loope LL, RejmÁNek M, Westbrooks R (1997) Introduced species: a significant component of humna-caused global change. N Z J Ecol 21:1–16

    Google Scholar 

  • Wang J, You Y, Tang Z, Liu S, Sun OJ (2014) Variations in leaf litter decomposition across contrasting forest stands and controlling factors at local scale. J Plant Ecol 8:261–272. https://doi.org/10.1093/jpe/rtu019

    Article  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633. https://doi.org/10.1126/science.1094875

    Article  CAS  PubMed  Google Scholar 

  • Williams LK, Shaw JD, Sindel BM, Wilson SC, Kristiansen P (2018) Longevity, growth and community ecology of invasive Poa annua across environmental gradients in the subantarctic. Basic Appl Ecol 29:20–31. https://doi.org/10.1016/j.baae.2018.02.003

    Article  Google Scholar 

  • Williamson MH, Fitter A (1996) The characters of successful invaders. Biol Conserv 78:163–170. https://doi.org/10.1016/0006-3207(96)00025-0

    Article  Google Scholar 

  • Wohler JR, Robertson DB, Laube HR (1975) Studies on the decomposition of Potamogeton diversifolius. Bull Torrey Bot Club 102:76–78. https://doi.org/10.2307/2484417

    Article  Google Scholar 

  • Wolkovich EM, Bolger DT, Cottingham KL (2009) Invasive grass litter facilitates native shrubs through abiotic effects. J Veg Sci 20:1121–1132

    Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas M-L, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827. https://doi.org/10.1038/nature02403

    Article  CAS  PubMed  Google Scholar 

  • Xiong S, Nilsson C (1999) The effects of plant litter on vegetation: a meta-analysis. J Ecol 87:984–994. https://doi.org/10.1046/j.1365-2745.1999.00414.x

    Article  Google Scholar 

  • Xiong Y, Xia H, Za L, Cai Xa FS (2008) Impacts of litter and understory removal on soil properties in a subtropical Acacia mangium plantation in China. Plant Soil 304:179–188

    CAS  Google Scholar 

  • Xu X, Hirata E (2005) Decomposition patterns of leaf litter of seven common canopy species in a subtropical forest: N and P dynamics. Plant Soil 273:279–289

    CAS  Google Scholar 

  • Xu X, Hirata E, Enoki T, Tokashiki Y (2004) Leaf litter decomposition and nutrient dynamics in a subtropical forest after typhoon disturbance. Plant Ecol 173:161–170. https://doi.org/10.1023/b:Vege.0000029319.05980.70

    Article  Google Scholar 

  • Xu J, Tang C, Chen ZL (2006) The role of plant residues in pH change of acid soils differing in initial pH. Soil Biol Biochem 38:709–719

    CAS  Google Scholar 

  • Zhang D, Hui D, Luo Y, Zhou G (2008) Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol 1:85–93. https://doi.org/10.1093/jpe/rtn002

    Article  Google Scholar 

  • Zhang L, Wang H, Zou J, Rogers WE, Siemann E (2014) Non-native plant litter enhances soil carbon dioxide emissions in an invaded annual grassland. PLoS ONE 9. https://doi.org/10.1371/journal.pone.0092301

  • Zhang P, Li B, Wu J, Hu S (2019) Invasive plants differentially affect soil biota through litter and rhizosphere pathways: a meta-analysis. Ecol Lett 22:200–210

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees whose valuable suggestions and comments significantly improved the quality of this paper. This work was supported by National Research Foundation of Korea (NRF-2017R1A2B4006761).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun Ju Lee.

Additional information

Responsible Editor: Alfonso Escudero.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mun, S., Lee, E.J. Litter decomposition rate and nutrient dynamics of giant ragweed (Ambrosia trifida L.) in the non-native habitat of South Korea. Plant Soil 449, 373–388 (2020). https://doi.org/10.1007/s11104-020-04502-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-020-04502-7

Keywords

Navigation