Advertisement

Induced systemic resistance -like responses elicited by rhizobia

  • María Laura Tonelli
  • María Soledad Figueredo
  • Johan Rodríguez
  • Adriana Fabra
  • Fernando IbañezEmail author
Review Article
  • 76 Downloads

Abstract

Background

Rhizobia are soil bacteria that engage into a mutualistic symbiosis with plants and benefit the host by fixing atmospheric N. In addition, rhizobia can be considered as biocontrol agents, contributing to plant health through direct inhibition of a wide range of pathogens. More recently, it became evident that rhizobial invasion of plant roots can also trigger an increased systemic resistance state in the host, a process resembling the Induced Systemic Resistance (ISR) mechanism. However, this indirect biocontrol property of rhizobia was relatively less explored.

Scope

In this review article, we present an overview of the current knowledge of ISR -like responses induced by rhizobia, considering general characteristics of this phenomenon, discussing the molecular pathways leading to this response and highlighting potential links between ISR -like responses and the nodulation signaling pathway.

Conclusions

A more detailed knowledge of these responses can result in development of biotechnological tools for sustainable crop production, through optimization of the systemic protective effect conferred by rhizobia.

Keywords

Rhizobia Legumes Symbiosis Defense Induced systemic resistance Priming 

Notes

Acknowledgments

The authors would like to thank anonymous reviewers, whose comments and suggestions helped to significantly improve and clarify this manuscript.

Funding information

This study was financially supported by SECyT -UNRC, CONICET and ANPCyT. María Soledad Figueredo and Johan Rodríguez are recipients of scholarship from CONICET. María Laura Tonelli, Adriana Fabra and Fernando Ibáñez are members of the Research Career from CONICET.

References

  1. Albus U, Baier R, Holst O, Pühler A, Niehaus K (2001) Suppression of an elicitor-induced oxidative burst reaction in Medicago sativa cell cultures by Sinorhizobium meliloti lipopolysaccharides. New Phytol 151:597–606CrossRefGoogle Scholar
  2. Arfaoui A, Sifi B, El Hassni M, El Hadrami I, Boudabbous A, Chérif M (2005) Biochemical analysis of chickpea protection against Fusarium wilt afforded by two Rhizobium isolates. Plant Pathol J 4:35–42CrossRefGoogle Scholar
  3. Arfaoui A, Sifi B, Boudabous A, Hadrami IE, Cherif M (2006) Identification of Rhizobium isolates possessing antagonistic activity against Fusarium oxysporum f. sp. ciceris, the causal agent of Fusarium wilt of chickpea. J Plant Pathol 88:67–75Google Scholar
  4. Arfaoui A, El Hadrami A, Mabrouk Y, Sifi B, Boudabous A, El Hadrami I, Chérif M (2007) Treatment of chickpea with Rhizobium isolates enhances the expression of phenylpropanoid defense-related genes in response to infection by Fusarium oxysporum f. sp. Ciceris. Plant Physiol Biochem 45:470–479PubMedCrossRefGoogle Scholar
  5. Arora NK, Kang SC, Maheshwari DK (2001) Isolation of siderophore-producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 81:673–677Google Scholar
  6. Aslam SN, Newman MA, Erbs G, Morrissey KL, Chinchilla D, Boller T, Jensen TT, De Castro C, Ierano T, Molinaro A, Jackson RW (2008) Bacterial polysaccharides suppress induced innate immunity by calcium chelation. Curr Biol 18:1078–1083PubMedCrossRefGoogle Scholar
  7. Beardon E, Scholes J, Ton J (2014) How do beneficial microbes induce systemic resistance? In: Walters DR, Newton AC, Lyon GD (eds) Induced resistance for plant defense: a sustainable approach to crop protection, 2nd edn. UK, Wiley Blackwell, pp 232–248Google Scholar
  8. Bejoysekar D, Chakrabartty PK (2014) Siderophore biosynthesis genes of Rhizobium sp. isolated from Cicer arietinum L. Botech 4:391–401Google Scholar
  9. Benezech C, Doudement M, Gourion B (2019) Legumes tolerance to rhizobia is not always observed and not always deserved. Cell MicrobiolGoogle Scholar
  10. Berrabah F, Bourcy M, Eschstruth A, Cayrel A, Guefrachi I, Mergaer P, Wen J, Jean V, Mysore KS, Gourion B, Ratet P (2014) A nonRD receptor-like kinase prevents nodule early senescence and defense-like reactions during symbiosis. New Phytol 203:1305–1314PubMedCrossRefGoogle Scholar
  11. Bhattacharya C, Deshpande B, Pandey B (2013) Isolation and characterization of Rhizobium sp. from root of legume plant (Pisum sativum) and its antibacterial activity against different bacterial strains. Int Agric Food Sci 3:138–141Google Scholar
  12. Boller T (2005) Peptide signalling in plant development and self/non-self perception. Curr Opin Cell Biol 17:116–122PubMedCrossRefGoogle Scholar
  13. Bonnet E, Van de Peer Y, Rouzé P (2006) The small RNA world of plants. New Phytol 171:451–468PubMedCrossRefGoogle Scholar
  14. Bourassa DV, Kannenberg EL, Sherrier DJ, Buhr RJ, Carlson RW (2017) The lipopolysaccharide lipid A long-chain fatty acid is important for Rhizobium leguminosarum growth and stress adaptation in free-living and nodule environments. Mol Plant Microbe Interact 30:161–175PubMedCrossRefGoogle Scholar
  15. Bourcy M, Brocard L, Pislariu CI, Cosson V, Mergaert P, Tadege M, Mysore K, Udvardi M, Gourion B, Ratet P (2013) Medicago truncatula DNF2 is a PI-PLC-XD-containing protein required for bacteroid persistence and prevention of nodule early senescence and defense-like reactions. New Phytol 197(4):1250–1261PubMedCrossRefGoogle Scholar
  16. Brown DB, Huang YC, Kannenberg EL, Sherrier DJ, Carlson RW (2011) An acpXL mutant of Rhizobium leguminosarum bv. phaseoli lacks 27-hydroxyoctacosanoic acid in its lipid A and is developmentally delayed during symbiotic infection of the determinate nodulating host plant Phaseolus vulgaris. J Bacteriol 193:4766–4778PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838PubMedCrossRefGoogle Scholar
  18. Cameron DD, Neal AL, van Wees SC, Ton J (2013) Mycorrhiza-induced resistance: more than the sum of its parts? Trends Plant Sci 18:539–545PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cao Y, Halane MK, Gassmann W, Stacey G (2017) The role of plant innate immunity in the legume-rhizobium symbiosis. Annu Rev Plant Biol 68:535–561PubMedCrossRefGoogle Scholar
  20. Chakraborty U, Chakraborty BN (1989) Interaction of Rhizobium leguminosarum and Fusarium solani f. sp. pisi on pea affecting disease development and phytoalexin production. Can J Bot 67:1698–1701CrossRefGoogle Scholar
  21. Choudhary DK, Johri BN (2009) Interactions of Bacillus spp. and plants–with special reference to induced systemic resistance (ISR). Microbiol Res 164:493–513PubMedCrossRefGoogle Scholar
  22. Clúa J, Roda C, Zanetti M, Blanco F (2018) Compatibility between legumes and rhizobia for the establishment of a successful nitrogen-fixing symbiosis. Genes 9:1–21Google Scholar
  23. Conrath U, Beckers GJ, Flors V, García-Agustín P, Jakab G, Mauch F, Newman MA, Pieterse CM, Poinssot B, Pozo MJ, Pugin A (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19:1062–1071PubMedCrossRefGoogle Scholar
  24. Conrath U, Beckers GJ, Langenbach CJ, Jaskiewicz MR (2015) Priming for enhanced defense. Annu Rev Phytopathol 53:97–119PubMedCrossRefGoogle Scholar
  25. D’Haeze W, Holsters M (2002) Nod factor structures, responses, and perception during initiation of nodule development. Glycobiology 12:79–105CrossRefGoogle Scholar
  26. D’Haeze W, Leoff C, Freshour G, Noel KD, Carlson RW (2007) Rhizobium etli CE3 bacteroid lipopolysaccharides are structurally similar but not identical to those produced by cultured CE3 bacteria. J Biol Chem 282:17101–17113PubMedCrossRefGoogle Scholar
  27. Das K, Prasanna R, Saxena AK (2017) Rhizobia: a potential biocontrol agent for soilborne fungal pathogens. Folia Microbiol 62:425–435CrossRefGoogle Scholar
  28. Day RB, Okada M, Ito Y, Tsukada K, Zaghouani H, Shibuya N, Stacey G (2001) Binding site for chitin oligosaccharides in the soybean plasma membrane. Plant Physiol 126:1162–1173PubMedPubMedCentralCrossRefGoogle Scholar
  29. De Castro C, Molinaro A, Lanzetta R, Silipo A, Parrilli M (2008) Lipopolysaccharide structures from Agrobacterium and Rhizobium species. Carbohydr Res 343:1924–1933.  https://doi.org/10.1016/j.carres.2008.01.036 CrossRefPubMedGoogle Scholar
  30. De Vleesschauwer D, Höfte M (2009) Rhizobacteria-induced systemic resistance. Adv Bot Res 51:223–281CrossRefGoogle Scholar
  31. Deakin WJ, Broughton WJ (2009) Symbiotic use of pathogenic strategies: Rhizobial protein secretion systems. Nat Rev Microbiol 7:312–320PubMedCrossRefPubMedCentralGoogle Scholar
  32. Diaz-Valle A, López-Calleja AC, Alvarez-Venegas R (2019) Enhancement of pathogen resistance in common bean plants by inoculation with Rhizobium etli. Front Plant Sci 10:1317Google Scholar
  33. Domonkos A, Kovács S, Gombár A, Kiss E, Horváth B, Kováts GZ, Farkas A, Tóth MT, Ayaydin F, Bóka K, Fodor L, Ratet P, Kereszt A, Endre G, Kaló P (2017) NAD1 controls defense-like responses in Medicago truncatula symbiotic nitrogen fixing nodules following rhizobial colonization in a BacA-independent manner. Genes 387:1–21Google Scholar
  34. Donlan R (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890PubMedPubMedCentralCrossRefGoogle Scholar
  35. Dutta S, Mishra AK, Kumar BD (2008) Induction of systemic resistance against fusarial wilt in pigeon pea through interaction of plant growth promoting rhizobacteria and rhizobia. Soil Biol Biochem 40:452–461CrossRefGoogle Scholar
  36. Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18(3):265–276PubMedCrossRefGoogle Scholar
  37. Ferguson BJ, Mens C, Hastwell AH, Zhang M, Su H, Jones CH, Chu X, Gresshoff PM (2019) Legume nodulation: the host controls the party. Plant Cell Environ 42(1):41–51PubMedCrossRefGoogle Scholar
  38. Fernandez-Göbel TF, Deanna R, Muñoz NB, Robert G, Asurmendi S, Lascano R (2019) Redox systemic signaling and induced tolerance responses during soybean–Bradyrhizobium japonicum interaction: involvement of nod factor receptor and autoregulation of nodulation. Front Plant Sci 10:1–15CrossRefGoogle Scholar
  39. Figueredo MS, Tonelli ML, Taurian T, Angelini J, Ibañez F, Valetti L, Muñoz V, Anzuay MS, Ludueña L, Fabra A (2014) Interrelationships between Bacillus sp. CHEP5 and Bradyrhizobium sp. SEMIA6144 in the induced systemic resistance against Sclerotium rolfsii and symbiosis on peanut plants. J Biosci 39:877–885PubMedCrossRefPubMedCentralGoogle Scholar
  40. Figueredo MS, Tonelli ML, Ibáñez F, Morla F, Cerioni G, Tordable M, Fabra A (2017) Induced systemic resistance and symbiotic performance of peanut plants challenged with fungal pathogens and co-inoculated with the biocontrol agent Bacillus sp. CHEP5 and Bradyrhizobium sp. SEMIA6144. Microbiol Res 197:65–73PubMedCrossRefPubMedCentralGoogle Scholar
  41. Figueredo MS, Ibáñez F, Rodríguez J, Fabra A (2018) Simultaneous inoculation with beneficial and pathogenic microorganisms modifies peanut plant responses triggered by each microorganism. Plant Soil 433(1–2):353–361CrossRefGoogle Scholar
  42. Fraysse N, Lindner B, Kaczynski Z, Sharypova L, Holst O, Niehaus K, Poinsot V (2005) Sinorhizobium meliloti strain 1021 produces a low-molecular-mass capsular polysaccharide that is a homopolymer of 3-deoxy-D-manno-oct-2-ulosonic acid harboring a phospholipid anchor. Glycobiology 15:101–108PubMedCrossRefPubMedCentralGoogle Scholar
  43. Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CL, Krishnamurthy L (2015) Plant growth promoting rhizobia: challenges and opportunities. Biotech 5:355–377Google Scholar
  44. Gully D, Czernic P, Cruveiller S, Mahé F, Longin C, Vallenet D, François P, Nidelet S, Rialle S, Giraud E, DasGupta M, Cartieaux F, Arrighi JF (2018) Transcriptome profiles of nod factor-independent symbiosis in the tropical legume Aeschynomene evenia. Sci Rep 8(1):10934PubMedPubMedCentralCrossRefGoogle Scholar
  45. Gupta R, Yadav SS, Verma SK, Dubey SK (2018) Siderophore production and biocontrol potential of rhizobium isolated from non-traditional leguminous crop in MP. Int J Pure Appl Biosci 6:142–145CrossRefGoogle Scholar
  46. Gutjahr C, Paszkowski U (2009) Weights in the balance: jasmonic acid and salicylic acid signaling in root-biotroph interactions. Mol Plant-Microbe Interact 22:763–772PubMedCrossRefPubMedCentralGoogle Scholar
  47. Haeze WD, Glushka J, Rycke RD, Holsters M, Carlson RW (2004) Structural characterization of extracellular polysaccharides of Azorhizobium caulinodans and importance for nodule initiation on Sesbania rostrata. Mol Microbiol 52:485–500PubMedCrossRefPubMedCentralGoogle Scholar
  48. Iavicoli A, Boutet E, Buchala A, Métraux JP (2003) Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant-Microbe Interact 16:851–858PubMedCrossRefPubMedCentralGoogle Scholar
  49. Janczarek M, Rachwał K, Marzec A, Grządziel J, Palusińska-Szysz M (2015) Signal molecules and cell-surface components involved in early stages of the legume–rhizobium interactions. Appl Soil Ecol 85:94–113CrossRefGoogle Scholar
  50. Jones JDG, Dangl JL (2006) The plant immune system. Nat Rev 444:323–329Google Scholar
  51. Jones KM, Sharopova N, Lohar DP, Zhang JQ, VandenBosch KA, Walker GC (2008) Differential response of the plant Medicago truncatula to its symbiont Sinorhizobium meliloti or an exopolysaccharide-deficient mutant. Proc Natl Acad Sci 105(2):704–709PubMedCrossRefGoogle Scholar
  52. Kalantari S, Marefat A, Naseri B, Hemmati R (2018) Improvement of bean yield and Fusarium root rot biocontrol using mixtures of Bacillus, Pseudomonas and Rhizobium. Trop Plant Pathol 43:499–505CrossRefGoogle Scholar
  53. Kannenberg EL, Carlson RW (2001) Lipid A and O-chain modifications cause Rhizobium lipopolysaccharides to become hydrophobic during bacteroid development. Mol Microbiol 39:379–392PubMedCrossRefGoogle Scholar
  54. Kannenberg EL, Reuhs BL, Forsberg LS, Carlson RW (1998) Lipopolysaccharides and K-antigens: their structures, biosynthesis, and functions. In: Spaink HP, Kondorosi A, Honykaas PJJ (eds) The Rhizobiaceae. Kluwer Publishers, pp 119–154Google Scholar
  55. Karmakar K, Kundu A, Rizvi AZ, Dubois E, Severac D, Czernic P, Cartieaux F, DasGupta M (2019) Transcriptomic analysis with the progress of symbiosis in ‘crack-entry’legume Arachis hypogaea highlights its contrast with ‘infection thread’adapted legumes. Mol Plant-Microbe Interact 32:271–285PubMedCrossRefGoogle Scholar
  56. Katiyar-Agarwal S, Jin H (2010) Role of small RNAs in host-microbe interactions. Annu Rev Phytopathol 48:225–246PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kawaharada Y, Kelly S, Nielsen MW, Hjuler CT, Gysel K, Muszyński A, Carlson RW, Thygesen MB, Sandal N, Asmussen MH, Vinther M (2015) Receptor-mediated exopolysaccharide perception controls bacterial infection. Nature 523:308–312PubMedCrossRefPubMedCentralGoogle Scholar
  58. Kelly S, Mun T, Stougaard J, Ben C, Andersen SU (2018) Distinct Lotus japonicus transcriptomic responses to a spectrum of bacteria ranging from symbiotic to pathogenic. Front Plant Sci 9(1218):1218PubMedPubMedCentralCrossRefGoogle Scholar
  59. Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathol 94:1259–1266CrossRefGoogle Scholar
  60. Kouchi H, Shimomura K, Hata S, Hirota A, Wu GJ, Kumagai H, Tajima S, Suganuma N, Suzuki A, Aoki T, Hayashi M (2004) Large-scale analysis of gene expression profiles during early stages of root nodule formation in a model legume, Lotus japonicus. DNA Res 11:263–274PubMedCrossRefGoogle Scholar
  61. Lagunas B, Schäfer P, Gifford ML (2015) Housing helpful invaders: the evolutionary and molecular architecture underlying plant root-mutualist microbe interactions. J Exp Bot 66:2177–2186PubMedPubMedCentralCrossRefGoogle Scholar
  62. Le Quere AJ, Deakin WJ, Schmeisser C, Carlson RW, Streit WR, Broughton WJ, Forsberg S (2006) Structural characterization of a K-antigen capsular polysaccharide essential for normal symbiotic infection in Rhizobium sp. NGR234: deletion of the rkpMNO locus prevents synthesis of 5,7-diacetamido-3,5,7,9-tetradeoxy-non-2-ulosonic acid. J Biol Chem 281:28981–28992PubMedCrossRefGoogle Scholar
  63. Lepek VC, D'Antuono AL (2005) Bacterial surface polysaccharides and their role in the rhizobia–legume association. Lotus Newslett 35:93–105Google Scholar
  64. Liang Y, Cao Y, Tanaka K, Thibivilliers S, Wan J, Choi J, Kang Ch, Qiu J, Stacey G (2013) Nonlegumes respond to rhizobial Nod factors by suppressing the innate immune response. Science 341:1384–1387PubMedCrossRefGoogle Scholar
  65. Libault M, Farmer A, Joshi T, Takahashi K, Langley RJ, Franklin LD, He J, Xu D, May G, Stacey G (2010) An integrated transcriptome atlas of the crop model Glycine max, and its use in comparative analyses in plants. Plant J 63:86–99PubMedGoogle Scholar
  66. Liu L, Chen X (2018) Intercellular and systemic trafficking of RNAs in plants. Nat Plants 4(11):869–878PubMedCrossRefGoogle Scholar
  67. Lohar DP, Bird DM (2003) Lotus japonicus: a new model to study root-parasitic nematodes. Plant Cell Physiol 44:1176–1184PubMedCrossRefGoogle Scholar
  68. Lohar DP, Sharopova N, Endre G, Penuela S, Samac D, Town C, Silverstein KA, VandenBosch KA (2006) Transcript analysis of early nodulation events in Medicago truncatula. Plant Physiol 140:221–234PubMedPubMedCentralCrossRefGoogle Scholar
  69. Lopez-Gomez M, Sandal N, Stougaard J, Boller T (2011) Interplay of flg22-induced defence responses and nodulation in Lotus japonicus. J Exp Bot 63:393–401PubMedPubMedCentralCrossRefGoogle Scholar
  70. Mabrouk Y, Zourgui L, Sifi B, Delavault P, Simier P, Belhadj O (2007) Some compatible Rhizobium leguminosarum strains in peas decrease infections when parasitised by Orobanche crenata. Weed Res 47:44–53CrossRefGoogle Scholar
  71. Martinez-Abarca F, Herrera-Cervera JA, Bueno P, Sanjuan J, Bisseling T, Olivares J (1998) Involvement of salicylic acid in the establishment of the Rhizobium meliloti-alfalfa symbiosis. Mol Plant-Microbe Interact 11:153–155CrossRefGoogle Scholar
  72. Martinez-Medina A, Flors V, Heil M, Mauch-Mani B, Pieterse CM, Pozo MJ, Ton J, van Dam NM, Conrath U (2016) Recognizing plant defense priming. Trends Plant Sci 21:818–822PubMedCrossRefGoogle Scholar
  73. Mauch-Mani B, Baccelli I, Luna E, Flors V (2017) Defense priming: an adaptative part of induced resistance. Annu Rev Plant Biol 68:485–512PubMedCrossRefGoogle Scholar
  74. Miri M, Janakirama P, Huebert T, Ross L, McDowell T, Orosz K, Markmann K, Szczyglowski K (2019) Inside out: root cortex-localized LHK1 cytokinin receptor limits epidermal infection of Lotus japonicus roots by Mesorhizobium loti. New Phytol 222(3):1523–1537PubMedCrossRefGoogle Scholar
  75. Mishra RP, Singh RK, Jaiswal HK, Kumar V, Maurya S (2006) Rhizobium-mediated induction of phenolics and plant growth promotion in rice (Oryza sativa L.). Curr Microbiol 52:383–389PubMedCrossRefGoogle Scholar
  76. Muñoz V, Ibañez F, Tordable M, Megias M, Fabra A (2015) Role of reactive oxygen species generation and Nod factors during the early symbiotic interaction between bradyrhizobia and peanut, a legume infected by crack entry. J Appl Microbiol 118:182–192PubMedCrossRefGoogle Scholar
  77. Nguyen HP, Ratu ST, Yasuda M, Göttfert M, Okazaki S (2018) InnB, a novel type III effector of Bradyrhizobium elkanii USDA61, controls symbiosis with Vigna species. Front Microbiol 9:1–10CrossRefGoogle Scholar
  78. Okazaki S, Kaneko T, Sato S, Saeki K (2013) Hijacking of leguminous nodulation signaling by the rhizobial type III secretion system. Proc Natl Acad Sci 110:17131–17136PubMedCrossRefGoogle Scholar
  79. Okazaki S, Tittabutr P, Teulet A, Thouin J, Fardoux J, Chaintreuil C, Gully D, Arrighi JF, Furuta N, Miwa H, Yasuda M, Nouwen N, Teaumroong N, Giraud E (2016) Rhizobium–legume symbiosis in the absence of Nod factors: two possible scenarios with or without the T3SS. ISME J 10:64–74PubMedCrossRefGoogle Scholar
  80. Oldroyd GE (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–263PubMedCrossRefGoogle Scholar
  81. Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny JL, Thonart P (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090PubMedCrossRefGoogle Scholar
  82. Osdaghi E, Shams-Bakhsh M, Alizadeh A, Lak MR, Maleki HH (2011) Induction of resistance in common bean by Rhizobium leguminosarum bv. phaseoli and decrease of common bacterial blight. Phytopathol Mediterr 50:45–54Google Scholar
  83. Pellock BJ, Cheng HP, Walker GC (2000) Alfalfa root nodule invasion efficiency is dependent on Sinorhizobium meliloti polysaccharides. J Bacteriol 182:4310–4318PubMedPubMedCentralCrossRefGoogle Scholar
  84. Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SCM (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521PubMedCrossRefGoogle Scholar
  85. Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SC, Bakker PA (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375PubMedCrossRefGoogle Scholar
  86. Rabie GH (1998) Induction of fungal disease resistance in Vicia faba by dual inoculation with Rhizobium leguminosarum and vesicular-arbuscular mycorrhizal fungi. Mycopathol 141:159–166CrossRefGoogle Scholar
  87. Ramadas Bhat U, Forsberg LS, Carlson RW (1994) Structure of lipid a component of Rhizobium leguminosarum bv. phaseoli lipopolysaccharide. Unique nonphosphorylated lipid A containing 2-amino-2-deoxygluconate, galacturonate, and glucosamine. J Biol Chem 269:14402–14410Google Scholar
  88. Reitz M, Rudolph K, Schröder I, Hoffmann-Hergarten S, Hallmann J, Sikora RA (2000) Lipopolysaccharides of Rhizobium etli strain G12 act in potato roots as an inducing agent of systemic resistance to infection by the cyst nematode Globodera pallida. Appl Environ Microbiol 66:3515–3518PubMedPubMedCentralCrossRefGoogle Scholar
  89. Reuhs BL, Carlson RW, Kim JS (1993) Rhizobium fredii and Rhizobium meliloti produce 3-deoxy-D-manno-2-octulosonicacid-containing polysaccharides that are structurally analogous to group II K antigens (capsular polysaccharides) found in Escherichia coli. J Bacteriol 175:3570–3580PubMedPubMedCentralCrossRefGoogle Scholar
  90. Reuhs BL, Williams MN, Kim JS, Carlson RW, Cote F (1995) Suppression of the fix phenotype of Rhizobium meliloti exoB mutants by lpsZ is correlated to a modified expression of the K polysaccharide. J Bacteriol 177:4289–4296PubMedPubMedCentralCrossRefGoogle Scholar
  91. Rey T, Nars A, Bonhomme M, Bottin A, Huguet S, Balzergue S, Jacquet C (2013) NFP, a LysM protein controlling Nod factor perception, also intervenes in Medicago truncatula resistance to pathogens. New Phytol 198:875–886PubMedCrossRefGoogle Scholar
  92. Rey T, André O, Nars A, Dumas B, Gough C, Bottin A, Jacquet C (2019) Lipo-chitooligosaccharide signalling blocks a rapid pathogen-induced ROS burst without impeding immunity. New Phytol 221(2):743–749PubMedCrossRefGoogle Scholar
  93. Saijo Y, Po-iian Loo E, Yasuda S (2018) Pattern recognition receptors and signaling in plantmicrobe interactions. Plant J 93:592–613PubMedCrossRefGoogle Scholar
  94. Scheidle H, Gross A, Niehaus K (2005) The lipid A substructure of the Sinorhizobium meliloti lipopolysaccharides is sufficient to suppress the oxidative burst in host plants. New Phytol 165:559–565PubMedCrossRefGoogle Scholar
  95. Schmidt TM, Thomé AHE, Sperotto RA, Granada CE (2018) Effect of rhizobia inoculation on the development of soil-borne pathogens infecting common bean plants. Eur J Plant Pathol 153:687–694CrossRefGoogle Scholar
  96. Schue M, Fekete A, Ortet P, Brutesco C, Heulin T, Schmitt-Kopplin P, Achouak W, Santaella C (2011) Modulation of metabolism and switching to biofilm prevail over exopolysaccharide production in the response of Rhizobium alamii to cadmium. PLoS One 6:11CrossRefGoogle Scholar
  97. Sinharoy S, Torres-Jerez I, Bandyopadhyay K, Kereszt A, Pislariu CI, Nakashima J, Benedito VA, Kondorosi E, Udvardi MK (2013) The C 2H2 transcription factor regulator of symbiosome differentiation represses transcription of the secretory pathway gene VAMP721a and promotes symbiosome development in Medicago truncatula. Plant Cell 25:3584–3601PubMedPubMedCentralCrossRefGoogle Scholar
  98. Smigielski L, Laubach EM, Pesch L, Glock JML, Albrecht F, Slusarenko AJ, Panstruga R, Kuhn H (2019) Nodulation induces systemic resistance of Medicago truncatula and Pisum sativum against Erysiphe pisi and primes for powdery mildew-triggered salicylic acid accumulation. Mol Plant Microbe Interact 32:1243–1255PubMedCrossRefGoogle Scholar
  99. Songwattana P, Noisangiam R, Teamtisong K, Prakamhang J, Teulet A, Tittabutr P, Piromyou P, Boonkerd N, Giraud E, Teaumroong N (2017) Type 3 secretion system (T3SS) of Bradyrhizobium sp. DOA9 and its roles in legume symbiosis and rice endophytic association. Front Microbiol 8:1810PubMedPubMedCentralCrossRefGoogle Scholar
  100. Soto MJ, Sanjuán J, Olivares J (2006) Rhizobia and plant-pathogenic bacteria: common infection weapons. Microbiol 152:3167–3174CrossRefGoogle Scholar
  101. Soto MJ, Domínguez-Ferreras A, Pérez-Mendoza D, Sanjuán J, Olivares J (2009) Mutualism versus pathogenesis: the give-and-take in plant–bacteria interactions. Cell Microbiol 11:381–388PubMedCrossRefGoogle Scholar
  102. Srinivasan T (2017) Studies on antifungal activity of siderophores produced by rhizobium spp isolated from groundnut (Arachis hypogaea). J Agric Sci Food Res 8:1–27CrossRefGoogle Scholar
  103. Stringlis IA, Proietti S, Hickman R, Van Verk MC, Zamioudis C, Pieterse CMJ (2018) Root transcriptional dynamics induced by beneficial rhizobacteria and microbial immune elicitors reveal signatures of adaptation to mutualists. Plant J 93:166–180PubMedCrossRefGoogle Scholar
  104. Tazawa J, Takahashi M, Usuki K, Yamamoto H (2007) Nodulation during vegetative growth of soybean stage does not affect the susceptibility to red crown rot caused by Calonectria ilicicola. J Gen Plant Pathol 73:180–184CrossRefGoogle Scholar
  105. Tellström V, Usadel B, Thimm O, Stitt M, Küster H, Niehaus K (2007) The lipopolysaccharide of Sinorhizobium meliloti suppresses defense-associated gene expression in cell cultures of the host plant Medicago truncatula. Plant Physiol 143:825–837PubMedPubMedCentralCrossRefGoogle Scholar
  106. Tonelli ML, Furlan A, Taurian T, Castro S, Fabra A (2011) Peanut priming induced by biocontrol agents. Physiol Mol Plant P 75:100–105CrossRefGoogle Scholar
  107. Tsikou D, Yan Z, Holt DB, Abel NB, Reid DE, Madsen LH, Bhasin H, Sexauer M, Stougaard J, Markmann K (2018) Systemic control of legume susceptibility to rhizobial infection by a mobile microRNA. Science 362:233–236PubMedCrossRefGoogle Scholar
  108. Van Loon LC, Bakker PHM, Pieterse JCM (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483PubMedCrossRefGoogle Scholar
  109. Van Wees SC, Van der Ent S, Pieterse CMJ (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448PubMedCrossRefGoogle Scholar
  110. Volpiano CG, Lisboa BB, São José JFB, de Oliveira AMR, Beneduzi A, Passaglia LMP, Vargas LK (2018) Rhizobium strains in the biological control of the phytopathogenic fungi Sclerotium (Athelia) rolfsii on the common bean. Plant Soil 432:229–243CrossRefGoogle Scholar
  111. Volpiano CG, Lisboa BB, Granada E, São José JBF, de Oliveira AMR, Beneduzi A, Perevalova Y, Passaglia LMP, Vargas LK (2019) Rhizobia for biological control of plant diseases. In: Kumar V, Prasad R, Kumar M, Choudhary D (eds) Microbiome in plant health and disease. Springer, Singapore, pp 315–336CrossRefGoogle Scholar
  112. Yamaya-Ito H, Shimoda Y, Tsuneo H, Shusei S, Takakazu K, Shakhawat H, Satoshi S, Masayoshi K, Makoto H, Hiroshi K, Yosuke (2018) Loss-of-function of ASPARTIC PEPTIDASE NODULE-INDUCED 1 (APN1) in Lotus japonicus restricts efficient nitrogen-fixing symbiosis with specific Mesorhizobium loti strains. Plant J 93:5–16PubMedCrossRefGoogle Scholar
  113. Yang S, Tang F, Gao M, Krishnan HB, Zhu H (2010) R gene-controlled host specificity in the legume rhizobia symbiosis. PNAS 107:18735–18740PubMedCrossRefGoogle Scholar
  114. Yu K, Pieterse CMJ, Bakker PA, Berendsen RL (2019) Beneficial microbes going underground of root immunity. Plant Cell Environ 2019:1–11Google Scholar
  115. Zamioudis C, Pieterse CMJ (2012) Modulation of host immunity by beneficial microbes. Mol Plant Microbe Interact 25:139–150PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Instituto de Investigaciones Agrobiotecnológicas, CONICETUniversidad Nacional de Río CuartoRío CuartoArgentina

Personalised recommendations