Advertisement

Radicular and foliar uptake, and xylem- and phloem-mediated transport of selenium in maize (Zea mays L.): a comparison of five Se exogenous species

  • Mengke Wang
  • Quang Toan Dinh
  • Mingxing Qi
  • Min Wang
  • Wenxiao Yang
  • Fei Zhou
  • Dongli LiangEmail author
Regular Article
  • 80 Downloads

Abstract

Background

Various species of selenium (Se) can be radicularly or foliarly absorbed by plants. However, differences of these species in uptake and transport via the xylem or phloem remain unclear.

Methods

Maize (Zea mays L.) seedlings were grown in hydroponic solutions with five exogenous Se species [inorganic forms: selenite and selenate; and organic forms: selenomethionine (SeMet), methyl-selenocysteine (MeSeCys), and selenocystine (SeCys2)] radicularly or foliarly applied on the plants.

Results

Under radicular application, the seedlings showed higher root uptake of organic Se than inorganic forms. Moreover, the largest proportion of Se in the shoots was found under MeSeCys treatment. Se accumulation under foliar application was low. The uptake of inorganic Se was higher than that of organic forms under foliar treatments. The phloem of maize showed a strong ability for downward Se transport, although the proportion of that in the whole plant was small (<10%). The largest percentage of Se distributed in the roots was found under MeSeCys treatments.

Conclusions

As a C4 species, maize can accumulate much Se from organic Se through root uptake but from inorganic forms through leaf uptake. It can transport much Se from the “source” to the “sink” with the application of organic Se, especially MeSeCys.

Keywords

Absorption Leaf Redistribution Split-root Translocation 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant number 41571454, to D.L. Liang).

Supplementary material

11104_2019_4346_MOESM1_ESM.docx (772 kb)
ESM 1 (DOCX 772 kb)

References

  1. Abrams MM, Shennan C, Zasoski RJ, Burau RG (1990) Selenomethionine uptake by wheat seedlings. Agron J 82(6):1127–1130.  https://doi.org/10.2134/agronj1990.00021962008200060021x CrossRefGoogle Scholar
  2. Ajwa HA, Bañuelos GS, Mayland HF (1998) Selenium uptake by plants from soils amended with inorganic and organic materials. J Environ Qual 27(5):1218–1227.  https://doi.org/10.2134/jeq1998.00472425002700050029x CrossRefGoogle Scholar
  3. Ali F (2018) Effect of selenite and selenate application (soil or foliar) on transport, transformation, and distribution of selenium in soil and their bioavailability in wheat (Triticum aestivum L.). Northwest A & F University, YanglingGoogle Scholar
  4. Arvy MP (1982) Translocation of selenium in the bean plant (Phaseolus vulgaris) and the field bean (Vicia faba). Physiol Plantarum 56(3):299–302.  https://doi.org/10.1111/j.1399-3054.1982.tb00342.x CrossRefGoogle Scholar
  5. Arvy MP (1993) Selenate and selenite uptake and translocation in bean plants (Phaseolus vulgaris). J Exp Bot 44(6):1083–1087.  https://doi.org/10.1093/jxb/44.6.1083 CrossRefGoogle Scholar
  6. Bañuelos GS, Arroyo I, Pickering IJ, Yang SI, Freeman JL (2015) Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata. Food Chem 166:603–608.  https://doi.org/10.1016/j.foodchem.2014.06.071 CrossRefPubMedGoogle Scholar
  7. Bañuelos GS, Arroyo IS, Dangi SR, Zambrano MC (2016) Continued selenium biofortification of carrots and broccoli grown in soils once amended with Se-enriched S. pinnata. Front Plant Sci.  https://doi.org/10.3389/fpls.2016.01251
  8. Bowen JE (1969) Absorption of borate ionic species by Saccharum officinarum L. Plant Cell Physiol 10(1):227–230.  https://doi.org/10.1093/oxfordjournals.pcp.a074390 CrossRefGoogle Scholar
  9. Carini F, Bengtsson G (2001) Post-deposition transport of radionuclides in fruit. J Environ Radioactiv 52(2–3):215–236.  https://doi.org/10.1016/s0265-931x(00)00034-5 CrossRefGoogle Scholar
  10. Collatz GJ, Ribas-Carbo M, Berry JA (1992) Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Funct Plant Biol 19(5):519–538.  https://doi.org/10.1071/PP9920519 CrossRefGoogle Scholar
  11. De Schepper V, De Swaef T, Bauweraerts I, Steppe K (2013) Phloem transport: a review of mechanisms and controls. J Exp Bot 64(16):4839–4850.  https://doi.org/10.1093/jxb/ert302 CrossRefPubMedGoogle Scholar
  12. Dernovics M, Stefánka Z, Fodor P (2002) Improving selenium extraction by sequential enzymatic processes for Se-speciation of selenium-enriched Agaricus bisporus. Anal Bioanal Chem 372(3):473–480.  https://doi.org/10.1007/s00216-001-1215-5 CrossRefPubMedGoogle Scholar
  13. Dinh QT, Cui Z, Huang J, Tran TAT, Wang D, Yang W, Zhou F, Wang M, Yu D, Liang D (2018) The selenium distribution in Chinese environment and its relationship with human health: a review. Environ Int 112:294–309.  https://doi.org/10.1016/j.envint.2017.12.035 CrossRefPubMedGoogle Scholar
  14. Dinh QT, Wang M, Tran TAT, Zhou F, Wang D, Zhai H, Peng Q, Xue M, Du Z, Bañuelos GS, Lin ZQ, Liang D (2019) Bioavailability of selenium in soil-plant system and a regulatory approach. Crit Rev Env Sci Tec 49(6):443–517.  https://doi.org/10.1080/10643389.2018.1550987 CrossRefGoogle Scholar
  15. Ellis DR, Sors TG, Brunk DG, Albrecht C, Orser C, Lahner B, Wood KV, Harris HH, Pickering IJ, Salt DE (2004) Production of Se-methylselenocysteine in transgenic plants expressing selenocysteine methyltransferase. BMC Plant Biol doi.  https://doi.org/10.1186/1471-2229-4-1 CrossRefGoogle Scholar
  16. Farooq MU, Tang Z, Zeng R, Liang Y, Zhang Y, Zheng T, Ei HH, Ye X, Jia X, Zhu J (2018) Accumulation, mobilization, and transformation of selenium in rice grain provided with foliar sodium selenite. J Sci Food Agr 99(6):2892–2900.  https://doi.org/10.1002/jsfa.9502 CrossRefGoogle Scholar
  17. Fordyce FM (2013) Selenium deficiency and toxicity in the environment. In: Selinus O (ed) Essentials of medical geology. Springer, Dordrecht, pp 375–416CrossRefGoogle Scholar
  18. Freeman JL, Zhang LH, Marcus MA, Fakra S, McGrath SP, Pilon-Smits EA (2006) Spatial imaging, speciation, and quantification of selenium in the hyperaccumulator plants Astragalus bisulcatus and Stanleya pinnata. Plant Physiol 142(1):124–134.  https://doi.org/10.1104/pp.106.081158 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Ghannoum O (2008) C4 photosynthesis and water stress. Ann Bot 103(4):635–644.  https://doi.org/10.1093/aob/mcn093 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Golubkina NA, Kosheleva OV, Krivenkov LV, Dobrutskaya HG, Nadezhkin S, Caruso G (2017) Intersexual differences in plant growth, yield, mineral composition and antioxidants of spinach (Spinacia oleracea L.) as affected by selenium form. Sci Hortic 225:350–358.  https://doi.org/10.1016/j.scienta.2017.07.001 CrossRefGoogle Scholar
  21. Guerrero B, Llugany M, Palacios O, Valiente M (2014) Dual effects of different selenium species on wheat. Plant Physiol Bioch 83:300–307.  https://doi.org/10.1016/j.plaphy.2014.08.009 CrossRefGoogle Scholar
  22. Hawrylak-Nowak B (2013) Comparative effects of selenite and selenate on growth and selenium accumulation in lettuce plants under hydroponic conditions. Plant Growth Regul 70(2):149–157.  https://doi.org/10.1007/s10725-013-9788-5 CrossRefGoogle Scholar
  23. Kikkert J, Berkelaar E (2013) Plant uptake and translocation of inorganic and organic forms of selenium. Arch Environ Con Tox 65(3):458–465.  https://doi.org/10.1007/s00244-013-9926-0 CrossRefGoogle Scholar
  24. Larue C, Castillo-Michel H, Sobanska S, Cécillon L, Bureau S, Barthès V, Ouerdane L, Carrière M, Sarret G (2014a) Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation. J Hazard Mater 264:98–106.  https://doi.org/10.1016/j.jhazmat.2013.10.053 CrossRefPubMedGoogle Scholar
  25. Larue C, Castillo-Michel H, Sobanska S, Trcera N, Sorieul S, Cécillon L, Ouerdane L, Legros S, Sarret G (2014b) Fate of pristine TiO2 nanoparticles and aged paint-containing TiO2 nanoparticles in lettuce crop after foliar exposure. J Hazard Mater 273:17–26.  https://doi.org/10.1016/j.jhazmat.2014.03.014 CrossRefPubMedGoogle Scholar
  26. Li HF, McGrath SP, Zhao FJ (2008) Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol 178(1):92–102.  https://doi.org/10.1111/j.1469-8137.2007.02343.x CrossRefPubMedGoogle Scholar
  27. Longchamp M, Angeli N, Castrec-Rouelle M (2013) Selenium uptake in Zea mays supplied with selenate or selenite under hydroponic conditions. Plant Soil 362(1–2):107–117.  https://doi.org/10.1007/s11104-012-1259-7 CrossRefGoogle Scholar
  28. Malone C, Koeppe DE, Miller RJ (1974) Localization of lead accumulated by corn plants. Plant Physiol 53(3):388–394.  https://doi.org/10.1104/pp.53.3.388 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Maseko T, Howell K, Dunshea FR, Ng K (2014) Selenium-enriched Agaricus bisporus increases expression and activity of glutathione peroxidase-1 and expression of glutathione peroxidase-2 in rat colon. Food Chem 146:327–333.  https://doi.org/10.1016/j.foodchem.2013.09.074 CrossRefPubMedGoogle Scholar
  30. Mengel K, Kirkby EA (2001) Principles of plant nutrition. Springer, DordrechtCrossRefGoogle Scholar
  31. Müller C, Riederer M (2005) Plant surface properties in chemical ecology. J Chem Ecol 31(11):2621–2651.  https://doi.org/10.1007/s10886-005-7617-7 CrossRefPubMedGoogle Scholar
  32. Page V, Feller U (2015) Heavy metals in crop plants: transport and redistribution processes on the whole plant level. Agron 5(3):447–463.  https://doi.org/10.3390/agronomy5030447 CrossRefGoogle Scholar
  33. Page V, Weisskopf L, Feller U (2006) Heavy metals in white lupin: uptake, root-to-shoot transfer and redistribution within the plant. New Phytol 171(2):329–341.  https://doi.org/10.1111/j.1469-8137.2006.01756.x CrossRefPubMedGoogle Scholar
  34. Page V, Blösch RM, Feller U (2012) Regulation of shoot growth, root development and manganese allocation in wheat (Triticum aestivum) genotypes by light intensity. Plant Growth Regul 67(3):209–215.  https://doi.org/10.1007/s10725-012-9679-1 CrossRefGoogle Scholar
  35. Sandholm M, Oksanen HE, Pesonen L (1973) Uptake of selenium by aquatic organisms. Limnol Oceanogr 18(3):496–499.  https://doi.org/10.4319/lo.1973.18.3.0496 CrossRefGoogle Scholar
  36. Schiavon M, Pilon-Smits EAH (2017) The fascinating facets of plant selenium accumulation–biochemistry, physiology, evolution and ecology. New Phytol 213(4):1582–1596.  https://doi.org/10.1111/nph.14378 CrossRefPubMedGoogle Scholar
  37. Schönherr J, Bukovac MJ (1972) Penetration of stomata by liquids: dependence on surface tension, wettability, and stomatal morphology. Plant Physiol 49(5):813–819.  https://doi.org/10.1104/pp.49.5.813 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Seppänen MM, Kontturi J, Heras IL, Madrid Y, Cámara C, Hartikainen H (2010) Agronomic biofortification of Brassica with selenium—enrichment of SeMet and its identification in Brassica seeds and meal. Plant Soil 337(1–2):273–283.  https://doi.org/10.1007/s11104-010-0523-y CrossRefGoogle Scholar
  39. Shahid M, Dumat C, Khalid S, Schreck E, Xiong T, Niazi NK (2017) Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. J Hazard Mater 325:36–58.  https://doi.org/10.1016/j.jhazmat.2016.11.063 CrossRefPubMedGoogle Scholar
  40. Shinmachi F, Buchner P, Stroud JL, Parmar S, Zhao FJ, McGrath SP, Hawkesford MJ (2010) Influence of sulfur deficiency on the expression of specific sulfate transporters and the distribution of sulfur, selenium, and molybdenum in wheat. Plant Physiol 153(1):327–336.  https://doi.org/10.1104/pp.110.153759 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Slekovec M, Goessler W (2005) Accumulation of selenium in natural plants and selenium supplemented vegetable and selenium speciation by HPLC-ICPMS. Chem Spec Bioavailab 17(2):63–73.  https://doi.org/10.3184/095422905782774919 CrossRefGoogle Scholar
  42. Sors TG, Ellis DR, Na GN, Lahner B, Lee S, Leustek T, Pickering IJ, Salt DE (2005) Analysis of sulfur and selenium assimilation in Astragalus plants with varying capacities to accumulate selenium. Plant J 42(6):785–797.  https://doi.org/10.1111/j.1365-313x.2005.02413.x CrossRefPubMedGoogle Scholar
  43. Terry N, Zayed AM (1994) Selenium volatilization by plants. Marcel Dekker, New YorkGoogle Scholar
  44. Turgeon R (2010) The role of phloem loading reconsidered. Plant Physiol 152(4):1817–1823.  https://doi.org/10.1104/pp.110.153023 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Turgeon R, Wolf S (2009) Phloem transport: cellular pathways and molecular trafficking. Annu Rev Plant Biol 60:207–221.  https://doi.org/10.1146/annurev.arplant.043008.092045 CrossRefPubMedGoogle Scholar
  46. Van Hoewyk D, Takahashi H, Inoue E, Hess A, Tamaoki M, Pilon-Smits EAH (2008) Transcriptome analyses give insights into selenium-stress responses and selenium tolerance mechanisms in Arabidopsis. Physiol Plantarum 132(2):236–253.  https://doi.org/10.1111/j.1399-3054.2007.01002.x CrossRefGoogle Scholar
  47. Venkatarajan MS, Braun W (2001) New quantitative descriptors of amino acids based on multidimensional scaling of a large number of physical–chemical properties. J Mol Model 7(12):445–453.  https://doi.org/10.1007/s00894-001-0058-5 CrossRefGoogle Scholar
  48. Wan Y, Wang K, Liu Z, Yu Y, Wang Q, Li H (2019) Effect of selenium on the subcellular distribution of cadmium and oxidative stress induced by cadmium in rice (Oryza sativa L.). Environ Sci Pol 26(16):16220–16228.  https://doi.org/10.1007/s11356-019-04975-9 CrossRefGoogle Scholar
  49. Wang CJ, Liu ZQ (2007) Foliar uptake of pesticides-present status and future challenge. Pestic Biochem Phys 87(1):1–8.  https://doi.org/10.1016/j.pestbp.2006.04.004 CrossRefGoogle Scholar
  50. Wang X, Chen S, Luo Z, Huang Q, Qiao Y, Sun H, Li H (2014) Mechanisms of selenium uptake, translocation and chemical speciation transformation in plants. J Agr Resour Environ 31(6):539–544 (in Chinese).  https://doi.org/10.13254/j.jare.2014.0250 CrossRefGoogle Scholar
  51. Wang S, Liang D, Wang D, Wei W, Fu D, Lin Z (2012) Selenium fractionation and speciation in agriculture soils and accumulation in corn (Zea mays L.) under field conditions in Shaanxi Province, China. Sci Total Environ 427: 159-164. https://doi.org/10.1016/j.scitotenv.2012.03.091CrossRefGoogle Scholar
  52. Wang M, Peng Q, Zhou F, Yang W, Dinh QT, Liang D (2019) Uptake kinetics and interaction of selenium species in tomato (Solanum lycopersicum L.) seedlings. Environ Sci Pollut R 26(10):9730–9738.  https://doi.org/10.1007/s11356-019-04182-6 CrossRefGoogle Scholar
  53. White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets–iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182(1):49–84.  https://doi.org/10.1111/j.1469-8137.2008.02738.x CrossRefPubMedGoogle Scholar
  54. White PJ, Bowen HC, Marshall B, Broadley MR (2007) Extraordinarily high leaf selenium to sulfur ratios define ‘Se-accumulator’plants. Ann Bot-London 100(1):111–118.  https://doi.org/10.1093/aob/mcm084 CrossRefGoogle Scholar
  55. Wu GL, Zhang XY, Zhang LY, Pan QH, Shen YY, Zhang DP (2004) Phloem unloading in developing walnut fruit is symplasmic in the seed pericarp and apoplasmic in the fleshy pericarp. Plant Cell Physiol 45(10):1461–1470.  https://doi.org/10.1093/pcp/pch169 CrossRefPubMedGoogle Scholar
  56. Wu Y, Gao L, Cao M, Xiang C (2007) Plant sulfur metabolism, regulation, and biological functions. Chinese Bull Bot 24(6):735–761 (in Chinese).  https://doi.org/10.3969/j.issn.1674-3466.2007.06.006 CrossRefGoogle Scholar
  57. Zhang L, Hu B, Li W, Che R, Deng K, Li H, Yu F, Ling H, Li Y, Chu C (2014) OsPT2, a phosphate transporter, is involved in the active uptake of selenite in rice. New Phytol 201(4):1183–1191.  https://doi.org/10.1111/nph.12596 CrossRefPubMedGoogle Scholar
  58. Zhao XQ, Mitani N, Yamaji N, Shen RF, Ma JF (2010) Involvement of silicon influx transporter OsNIP2; 1 in selenite uptake in rice. Plant Physiol 153(4):1871–1877.  https://doi.org/10.1104/pp.110.157867 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Zhou F, Yang W, Wang M, Miao Y, Li Z, Liang D (2018) Effects of selenium application on Se content and speciation in Lentinula edode. Food Chem 265:182–188.  https://doi.org/10.1016/j.foodchem.2018.05.087 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mengke Wang
    • 1
  • Quang Toan Dinh
    • 1
    • 2
  • Mingxing Qi
    • 1
  • Min Wang
    • 1
  • Wenxiao Yang
    • 1
  • Fei Zhou
    • 1
  • Dongli Liang
    • 1
    • 3
    Email author
  1. 1.College of Natural Resources and EnvironmentNorthwest A&F UniversityYanglingChina
  2. 2.Faculty of Management ScienceThu Dau Mot UniversityThu Dau Mot CityVietnam
  3. 3.Key Laboratory of Plant Nutrition and the Agri-environment in Northwest ChinaMinistry of AgricultureYanglingChina

Personalised recommendations