Advertisement

Environmental correlates of seed weight of tropical semi-arid woody species

  • Adriana dos Santos CostaEmail author
  • Juliana Stropp
  • Nicolli Albuquerque de Carvalho
  • Fernanda Alves-Martins
  • Richard J. Ladle
  • Ana C. M. Malhado
Regular Article

Abstract

Aims

The survival and distribution of plant species in the extreme environmental conditions of semi-arid regions is strongly dependent on traits associated with drought resistance. Seed weight may be particularly important, since larger seeds are predicted to promote survival in harsh environments, especially those of low soil moisture. Here, we test this hypothesis using data on the seed weight of 277 woody plant species in the semi-arid Caatinga biome of northeast Brazil.

Methods

We used Structural Equation Models (SEM) to test for associations between seed weight and biophysical conditions, including temperature, precipitation, climatic seasonality, soil-vegetation interaction and soil compaction.

Results

Species occurrence data were geographically biased due to large areas of the biome that remain under-collected. The strongest statistical association was between seed weight and soil compaction, with mean temperature of the driest quarter and aridity directly influencing soil compaction (and indirectly influencing seed weight).

Conclusions

We conclude that the larger seeds of woody species in the Caatinga are primarily an adaptation to compacted soil, uneven distribution of rainfall and high temperatures, intrinsic conditions of the Caatinga biome.

Keywords

Arid and semi-arid Dry forest Seasonality Compaction Rainfall Vegetation 

Notes

Acknowledgements

This study was funded by the Brazilian Coordination for the Improvement of Higher Education Personnel (CAPES) - Finance Code 001. Ana Malhado and Richard Ladle are supported by Brazilian National Council for Scientific and Technological Development (CNPq) grants (#310953/2014-6, #310349/2015-0, #309980/2018-6). JS was funded by the CNPq pos-doctoral fellowship (#434391/2016-6). FAM was funded by a CAPES post-doctoral fellowship (#120147/2016-01). We would like to thank Dr. Marcelo Freire Moro and Dr. Inara Roberta Leal for valuable comments and suggestions.

Supplementary material

11104_2019_4341_MOESM1_ESM.pdf (610 kb)
ESM 1 (PDF 610 kb)
11104_2019_4341_MOESM2_ESM.xls (2.1 mb)
ESM 2 (XLS 2142 kb)

References

  1. Aarssen LW, Jordan CY (2001) Between-species patterns of covariation in plant size, seed size, and fecundity in monocarpic herbs. Ecoscience 8:471–477.  https://doi.org/10.1080/11956860.2001.11682677 CrossRefGoogle Scholar
  2. Ab’Sáber AN (1974) O domínio morfoclimático semi-árido das caatingas brasileiras. Geomorfologia 43:1–39Google Scholar
  3. Acosta Salvatierra LH, Ladle RJ, Barbosa H et al (2017) Protected areas buffer the Brazilian semi-arid biome from climate change. Biotropica 49:753–760.  https://doi.org/10.1111/btp.12459 CrossRefGoogle Scholar
  4. Atwell BJ (1993) Response of roots to mechanical impedance. Environ Exp Bot 33:22–40CrossRefGoogle Scholar
  5. Barga S, Dilts TE, Leger EA (2017) Climate variability affects the germination strategies exhibited by arid land plants. Oecologia 185:437–452.  https://doi.org/10.1007/s00442-017-3958-5 CrossRefPubMedGoogle Scholar
  6. Bassett IE, Simcock RC, Mitchell ND (2005) Consequences of soil compaction for seedling establishment : implications for natural regeneration and restoration. Austral Ecol 30:827–833CrossRefGoogle Scholar
  7. Bauman D, Drouet T, Dray S, Vleminckx J (2018) Disentangling good from bad practices in the selection of spatial or phylogenetic eigenvectors. Ecography (Cop) 41:1638–1649.  https://doi.org/10.1111/ecog.03380 CrossRefGoogle Scholar
  8. Bergholz K, Jeltsch F, Weiss L et al (2015) Fertilization affects the establishment ability of species differing in seed mass via direct nutrient addition and indirect competition effects. Oikos 124:1547–1554.  https://doi.org/10.1111/oik.02193 CrossRefGoogle Scholar
  9. Bochet E (2015) The fate of seeds in the soil: a review of the influence of overland flow on seed removal and its consequences for the vegetation of arid and semiarid patchy ecosystems. Soil 1:131–146.  https://doi.org/10.5194/soil-1-131-2015 CrossRefGoogle Scholar
  10. Bonfil C (1998) The efffects of seed size, cotyledon reserves, and herbivory on seedling survival and growth in Quercus Rugosa and Q. Laurina (Fagaceae). Am J Bot 85:79–87.  https://doi.org/10.2307/2446557 CrossRefPubMedGoogle Scholar
  11. Boyle B, Hopkins N, Lu Z et al (2013) The taxonomic name resolution service: an online tool for automated standardization of plant names. BMC Bioinformatics 14:1471–2105.  https://doi.org/10.1186/1471-2105-14-16 CrossRefGoogle Scholar
  12. Brazilian Flora Group (2015) Growing knowledge: an overview of seed plant diversity in Brazil. Rodriguesia 66:1085–1113.  https://doi.org/10.1590/2175-7860201566411 CrossRefGoogle Scholar
  13. Calatayud J, Hortal J, Medina NG et al (2016) Glaciations, deciduous forests, water availability and current geographical patterns in the diversity of European Carabus species. J Biogeogr 43:2343–2353.  https://doi.org/10.1111/jbi.12811 CrossRefGoogle Scholar
  14. Carvalho G (2017) Tools for Interacting with the Brazilian Flora 2020Google Scholar
  15. Chambers JC, MacMahon JA (1994) A day in the life of a seed : movements and fates of seeds and their implications for natural and managed systems. Annu Rev Ecol Syst 25:263–292.  https://doi.org/10.1146/annurev.es.25.110194.001403 CrossRefGoogle Scholar
  16. Chapin FS III, Autumn K, Pugnaire F (1993) Evolution of suites of traits in response to environmental stress. Am Nat 142:78–92.  https://doi.org/10.1002/aenm.201100632 CrossRefGoogle Scholar
  17. Colombi T, Braun S, Keller T, Walter A (2016) Artificial macropores attract crop roots and enhance plant productivity on compacted soils. Sci Total Environ 574:1283–1293.  https://doi.org/10.1016/j.scitotenv.2016.07.194 CrossRefPubMedGoogle Scholar
  18. Cornwell WK, Ackerly DD (2009) Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol Monogr 79:109–126.  https://doi.org/10.1890/07-1134.1 CrossRefGoogle Scholar
  19. Correia RA, Ruete A, Stropp J et al (2019) Using ignorance scores to explore biodiversity recording effort for multiple taxa in the Caatinga. Ecol Indic 106:105539.  https://doi.org/10.1016/j.ecolind.2019.105539 CrossRefGoogle Scholar
  20. Costa-Saura JM, Martínez-Vilalta J, Trabucco A et al (2016) Specific leaf area and hydraulic traits explain niche segregation along an aridity gradient in Mediterranean woody species. Perspect Plant Ecol Evol Syst 21:23–30.  https://doi.org/10.1016/J.PPEES.2016.05.001 CrossRefGoogle Scholar
  21. da Silva KA, dos Santos DM, dos Santos JMFF et al (2012) Spatio-temporal variation in a seed bank of a semi-arid region in northeastern Brazil. Acta Oecol 46:25–32.  https://doi.org/10.1016/j.actao.2012.10.008 CrossRefGoogle Scholar
  22. da Silva JMC, Leal IR, Tabarelli M (2017) Caatinga the largest tropical dry Forest region in South America. Springer International Publishing, BerlinGoogle Scholar
  23. de Casas RR, Willis CG, Pearse WD et al (2017) Global biogeography of seed dormancy is determined by seasonality and seed size: a case study in the legumes. New Phytol 214:1527–1536.  https://doi.org/10.1111/nph.14498 CrossRefGoogle Scholar
  24. Deblauwe V, Droissart V, Bose R et al (2016) Remotely sensed temperature and precipitation data improve species distribution modelling in the tropics. Glob Ecol Biogeogr 25:443–454.  https://doi.org/10.1111/geb.12426 CrossRefGoogle Scholar
  25. DeMalach N, Kadmon R (2018) Seed mass diversity along resource gradients: the role of allometric growth rate and size-asymmetric competition. Ecology 99:2196–2206.  https://doi.org/10.1002/ecy.2450 CrossRefPubMedGoogle Scholar
  26. Deng L, Wang K, Li J et al (2016) Effect of soil moisture and atmospheric humidity on both plant productivity and diversity of native grasslands across the loess plateau. China Ecol Eng 94:525–531CrossRefGoogle Scholar
  27. Dimiceli C, Carroll M, Sohlberg R et al (2015) MOD44B MODIS/Terra vegetation continuous fields yearly L3 global 250m SIN grid V006 [data set].NASA EOSDIS land processes DAAC.  https://doi.org/10.5067/MODIS/MOD44B.006
  28. Dubuis A, Giovanettina S, Pellissier L et al (2013) Improving the prediction of plant species distribution and community composition by adding edaphic to topo-climatic variables. J Veg Sci 24:593–606.  https://doi.org/10.1111/jvs.12002 CrossRefGoogle Scholar
  29. Foster SA (1986) On the adaptive value of large seeds for tropical moist Forest trees : a review and synthesis. Bot Rev 52:260–299.  https://doi.org/10.1007/BF02860997 CrossRefGoogle Scholar
  30. Galindo-Rodriguez C, Roa-Fuentes LL (2017) Seed desiccation tolerance and dispersal in tropical dry forests in Colombia: implications for ecological restoration. For Ecol Manag 404:289–293.  https://doi.org/10.1016/j.foreco.2017.08.042 CrossRefGoogle Scholar
  31. García-Roselló E, Guisande C, Manjarrés-Hernández A et al (2015) Can we derive macroecological patterns from primary global biodiversity information facility data? Glob Ecol Biogeogr 24:335–347.  https://doi.org/10.1111/geb.12260 CrossRefGoogle Scholar
  32. Griffith DA, Peres-Neto PR (2006) Spatial modeling in ecology: the flexibilility of eigenfunction spatial analyses. Ecology 87:2603–2613.  https://doi.org/10.1890/0012-9658(2006)87[2603:SMIETF]2.0.CO;2 CrossRefPubMedGoogle Scholar
  33. Heilman P (1981) Root penetration of Douglas-fir seedlings into compacted soil. For Sci 27:660–666.  https://doi.org/10.1093/forestscience/27.4.660 CrossRefGoogle Scholar
  34. Hengl T, de Jesus JM, Heuvelink GB et al (2017) SoilGrids250m: global gridded soil information based on machine learning. PLoS One 12:1–40.  https://doi.org/10.1371/journal.pone.0169748 CrossRefGoogle Scholar
  35. Henry FH, Wayne MR (1982) Effects of seed size on seedling size in Virola surinamensis; a within and between tree analysis. Oecologia 53:347–351CrossRefGoogle Scholar
  36. Hortal J, Garcia-Pereira P, García-Barros E (2004) Butterfly species richness in mainland Portugal: predictive models of geographic distribution patterns. Ecography (Cop) 27:60–62.  https://doi.org/10.1136/jcp.24.3.285-a CrossRefGoogle Scholar
  37. IBGE (2002) [Instituto Brasileiro de Geografia e Estatística] Mapa de clima do Brasil. IBGE, Rio de Janeiro.Mapa de biomas do Brasil: primeira aproximação. IBGE, Rio de JaneiroGoogle Scholar
  38. IBGE (2004) [Instituto Brasileiro de Geografia e estatítica] Mapa de biomas do Brasil: primeira aproximaçãoGoogle Scholar
  39. Jakobsson A, Eriksson O (2000) A comparative study of seed number, seed size, seedling size and recruitment in grassland plants. Oikos 88:494–502.  https://doi.org/10.1034/j.1600-0706.2000.880304.x CrossRefGoogle Scholar
  40. James JJ, Svejcar TJ, Rinella MJ (2011) Demographic processes limiting seedling recruitment in arid grassland restoration. J Appl Ecol 48:961–969.  https://doi.org/10.1111/j.1365-2664.2011.02009.x CrossRefGoogle Scholar
  41. Jolly W, Running SW (2004) Effects of precipitation and soil water potential on drought deciduous phenology in the Kalahari. Glob Chang Biol 10:303–308.  https://doi.org/10.1046/j.1529-8817.2003.00701.x CrossRefGoogle Scholar
  42. Khurana E, Sagar R, Singh JS (2006) Seed size: a key trait determining species distribution and diversity of dry tropical forest in northern India. Acta Oecol 29:196–204.  https://doi.org/10.1016/j.actao.2005.10.003 CrossRefGoogle Scholar
  43. Lebrija-Trejos E, Reich PB, Hernández A, Wright SJ (2016) Species with greater seed mass are more tolerant of conspecific neighbours: a key driver of early survival and future abundances in a tropical forest. Ecol Lett 19:1071–1080.  https://doi.org/10.1111/ele.12643 CrossRefPubMedGoogle Scholar
  44. Lefcheck JS (2016) PIECEWISE SEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol Evol 7:573–579.  https://doi.org/10.1111/2041-210X.12512 CrossRefGoogle Scholar
  45. Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74:1659–1673CrossRefGoogle Scholar
  46. Leite PA, de Souza E, dos Santos E et al (2018) The influence of forest regrowth on soil hydraulic properties and erosion in a semiarid region of Brazil. Ecohydrology 11:1–12.  https://doi.org/10.1002/eco.1910 CrossRefGoogle Scholar
  47. Lobo JM, , Joaquín Hortal, José Luís Yela, Andrés Millán DS-F, Emilio García-Roselló, Jacinto González-Dacosta, Juergen Heinee, Luís González-Vilas CG (2018) KnowBR: an application to map the geographical variation of survey effort and identify well-surveyed areas from biodiversity databases. Ecol Indic 91:241–248. doi:  https://doi.org/10.1016/j.ecolind.2018.03.077 CrossRefGoogle Scholar
  48. Lorenzi H (2008) Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil, vol 1, 5th edn. Editora Editora Plantarum, Nova OdessaGoogle Scholar
  49. Lorenzi H (2009) Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil, vol 2. Editora Plantarum, Nova OdessaGoogle Scholar
  50. Lorenzi H (2016) Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil, vol 3. Editora Plantarum, Nova OdessaGoogle Scholar
  51. Maestre FT, Cortina J, Bautista S et al (2003) Small-scale environmental heterogeneity and spatiotemporal in a semiarid degraded ecosystem dynamics of seedling Establishm. Ecosystems 6:630–643.  https://doi.org/10.1007/s10021-002-0222-5 CrossRefGoogle Scholar
  52. Malhado ACM, Oliveira-Neto JA, Stropp J et al (2015) Climatological correlates of seed size in Amazonian forest trees. J Veg Sci 26:956–963.  https://doi.org/10.1111/jvs.12301 CrossRefGoogle Scholar
  53. Merino-Martín L, Courtauld C, Commander L et al (2017) Interactions between seed functional traits and burial depth regulate germination and seedling emergence under water stress in species from semi-arid environments. J Arid Environ 147:25–33.  https://doi.org/10.1016/j.jaridenv.2017.07.018 CrossRefGoogle Scholar
  54. Metz J, Liancourt P, Kigel J et al (2010) Plant survival in relation to seed size along environmental gradients: a long-term study from semi-arid and Mediterranean annual plant communities. J Ecol 98:697–704.  https://doi.org/10.1111/j.1365-2745.2010.01652.x CrossRefGoogle Scholar
  55. Moles AT (2018) Being John Harper: using evolutionary ideas to improve understanding of global patterns in plant traits. J Ecol 106:1–18.  https://doi.org/10.1111/1365-2745.12887 CrossRefGoogle Scholar
  56. Moles AT, Westoby M (2004) Seedling survival and seed size : a synthesis of the literature. J Ecol 92:372–383CrossRefGoogle Scholar
  57. Moles AT, Westoby M (2006) Seed size and plant strategy across the whole life cycle. Oikos 113:91–105.  https://doi.org/10.1111/j.0030-1299.2006.14194.x CrossRefGoogle Scholar
  58. Moro MF, Lughadha EN, Filer DL et al (2014) A catalogue of the vascular plants of the Caatinga Phytogeographical domain: a synthesis of floristic and phytosociological surveys. Phytotaxa 160:1–30.  https://doi.org/10.11646/phytotaxa.160.1.1 CrossRefGoogle Scholar
  59. Moro MF, Araújo FS, Rodal MJN, Martins FR (2015) Fitossociologia no Brasil: Métodos e Estudos de Casos. In: Eisenlohr PV, Felfili M jeanine, Melo MM da R de et al (eds) Fitossociologia no Brasil: Métodos e Estudos de Casos-Vol II. Editora UFV, Viçosa, pp 412–451Google Scholar
  60. Moro MF, Nic Lughadha E, de Araújo FS, Martins FR (2016) A phytogeographical metaanalysis of the Semiarid Caatinga domain in Brazil. Bot Rev 82:91–148.  https://doi.org/10.1007/s12229-016-9164-z CrossRefGoogle Scholar
  61. Muenchow J, von Wehrden H, Rodríguez EF et al (2013) Woody vegetation of a peruvian tropical dry forest along a climatic gradient depends more on soil than annual precipitation. Erdkunde 67:241–248.  https://doi.org/10.3112/erdkunde.2013.03.03 CrossRefGoogle Scholar
  62. Murray BR, Brown AHD, Dickman CR, Crowther MS (2004) Geographical gradients in seed mass in relation to climate. J Biogeogr 31:379–388.  https://doi.org/10.1046/j.0305-0270.2003.00993.x CrossRefGoogle Scholar
  63. Nimer E (1972) Climatologia da região Nordeste do Brasil. Rev Bras Geogr 34:3–51Google Scholar
  64. Nimer E (1989) Climatologia do Brasil. IBGE, Rio de JaneiroGoogle Scholar
  65. Oksanen J, Blanchet FG, Kindt R et al (2013) Vegan: Community Ecology PackageGoogle Scholar
  66. Oyama MD, Nobre CA (2004) Climatic consequences of a large-scale desertification in Northeast Brazil: a GCM simulation study. J Clim 17:3203–3213.  https://doi.org/10.1017/jfm.2014.178 CrossRefGoogle Scholar
  67. Pinheiro EAR, de van Lier QJ, Bezerra AHF (2017) Hydrology of a water-limited forest under climate change scenarios: the case of the Caatinga biome, Brazil. Forests 8:62.  https://doi.org/10.3390/f8030062 CrossRefGoogle Scholar
  68. Queiroz LP, Cardoso D, Fernandes MF, Moro MF (2017) Diversity and evolution of flowering plants of the Caatinga do main. In: Inara R, Leal MT (eds) José Maria Cardoso da Silva. The Largest Tropical Dry Forest Region in South America. Springer International Publishing, Caatinga, pp 23–63Google Scholar
  69. Ribeiro EM, Arroyo-Rodríguez V, Santos BA et al (2015) Chronic anthropogenic disturbance drives the biological impoverishment of the Brazilian Caatinga vegetation. J Appl Ecol 52:611–620.  https://doi.org/10.1111/1365-2664.12420 CrossRefGoogle Scholar
  70. Sampaio EVS (1995) Overview if the Brazilian caatinga. In: Bullock SH, Mooney HA, Medina E (eds) Seasonally dry tropical forests. 2009, Cambridge, pp 35–63Google Scholar
  71. Sfair JC, de Bello F, França D (2018) Chronic human disturbance affects plant trait distribution in a seasonally dry tropical forest. Environ Res Lett 13:025005.  https://doi.org/10.1088/1748-9326/aa9f5e CrossRefGoogle Scholar
  72. Sheldon JC (1974) The behaviour of seeds in soil: III. The influence of seed morphology and the behaviour of seedlings on the establishment of plants from surface-lying seed. J Ecol 62:47–66CrossRefGoogle Scholar
  73. Shipley B (2009) Confirmatory path analysis in a generalized multilevel context. Ecology 90:363–368.  https://doi.org/10.1890/08-1034.1 CrossRefPubMedGoogle Scholar
  74. SID RBG (2017) Seed Information Database (SID). Version 7.1. Available from: http://data.kew.org/sid/
  75. Silva SI, Oliveira AFM, Negri G, Salatino A (2014) Seed oils of Euphorbiaceae from the Caatinga, a Brazilian tropical dry forest. Biomass Bioenergy 69:124–134.  https://doi.org/10.1016/j.biombioe.2014.07.010 CrossRefGoogle Scholar
  76. Šímová I, Violle C, Kraft NJB et al (2015) Shifts in trait means and variances in north American tree assemblages: species richness patterns are loosely related to the functional space. Ecography (Cop) 38:649–658.  https://doi.org/10.1111/ecog.00867 CrossRefGoogle Scholar
  77. Simpson AH, Richardson SJ, Laughlin DC (2016) Soil–climate interactions explain variation in foliar, stem, root and reproductive traits across temperate forests. Glob Ecol Biogeogr 25:964–978.  https://doi.org/10.1111/geb.12457 CrossRefGoogle Scholar
  78. Siqueira-Filho JA, Conceição AA, Rapini A et al (2012) Flora of the Caatingas of the São Francisco River. In: Flora of the Caatingas of the São Francisco River. Natural History and Conservation. Editora Andrea Jakobsson Estúdio Editorial Ltda, Rio de Janeiro, pp 446–542Google Scholar
  79. Stearns S (1992) The evolution of life histories. Oxford University Press, OxfordGoogle Scholar
  80. Stromberg JC, Boudell JA (2013) Floods, drought, and seed mass of riparian plant species. J Arid Environ 97:99–107.  https://doi.org/10.1016/j.jaridenv.2013.05.012 CrossRefGoogle Scholar
  81. Thompson K, Band SR, Hodgson JG (1993) Seed size and shape predict persistence in soil. Funct Ecol 7:236.  https://doi.org/10.2307/2389893 CrossRefGoogle Scholar
  82. Unger PW, Kaspar TC (1994) Soil compaction and root growth: a review. Agron J 86:759–766.  https://doi.org/10.2134/agronj1994.00021962008600050004x CrossRefGoogle Scholar
  83. Volis S, Mendlinger S, Ward D (2002) Differentiation in populations of Hordeum spontaneum along a gradient of environmental productivity and predictability: life history and local adaptation. Biol J Linn Soc 77:479–490CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Adriana dos Santos Costa
    • 1
    Email author
  • Juliana Stropp
    • 1
  • Nicolli Albuquerque de Carvalho
    • 1
  • Fernanda Alves-Martins
    • 2
  • Richard J. Ladle
    • 1
  • Ana C. M. Malhado
    • 1
  1. 1.Institute of Biological and Health SciencesFederal University of AlagoasMaceióBrazil
  2. 2.Departament of Biogeography and Global ChangeMuseo Nacional de Ciencias Naturales (MNCN-CSIC)MadridSpain

Personalised recommendations