Glutathione supplementation prevents iron deficiency in Medicago scutellata grown in rock sand under different levels of bicarbonate
Abstract
Background and aims
The effects of root glutathione (GSH) supplementation on leaf chlorophyll, Fe concentrations and contents in leaves, stems and roots, and traits associated to Fe deficiency were studied in Medicago scutellata plants grown in rock sand under conditions of Fe deficiency, in the presence of different concentrations of bicarbonate.
Methods
Plants were grown in acid-washed rock sand irrigated with a zero Fe solution (pH 7.8 with 0.5 g L−1 CaCO3) or a 45 μM Fe(III)-EDDHA solution (5 mM MES, pH 5.5), with 0, 5 or 15 mM NaHCO3, and 250 mL of 1 mM GSH was added daily to half of the pots.
Results
Iron deficiency caused characteristic symptoms in plants, with GSH supplementation relieving them. Glutathione supplementation led to increases in total Fe, chlorophyll and leaf total and extractable Fe, whereas root Fe concentrations decreased. Traits associated to Fe deficiency, including changes in biomass, root morphology, carboxylate contents and antioxidant parameters became less intense with GSH supplementation.
Conclusions
Glutathione supplementation allowed plants to take up Fe from the rock sand via a reductive solubilization mechanism. Also, the distribution of Fe within the plant changed, with more Fe being allocated to the shoot tissues and less to the roots.
Keywords
Iron Iron chlorosis Iron oxides Root fertilisation LegumesAbbreviations
- Chl
Chlorophyll
- GSH
Glutathione
- SPAD
Soil-Plant Analyses Development
Notes
Acknowledgements
Authors acknowledge the support of the Department of Soil Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran. This work was part of the research project on M. scutellata 3/41380. Support was obtained by the Spanish State Research Agency (project AGL2016-75226-R, AEI/FEDER, EU). Authors thank Cristina Ortega Palmeiro for help with the Fe(III)-oxide solubilization experiments with the Olis spectrophotometer.
Supplementary material
References
- Abadía J, Monge E, Montañés L, Heras L (1984) Extraction of iron from plant leaves by Fe (II) chelators. J Plant Nutr 7:777–784CrossRefGoogle Scholar
- Abadía J, López-Millán A-F, Rombolà A, Abadía A (2002) Organic acids and Fe deficiency: a review. Plant Soil 241:75–86CrossRefGoogle Scholar
- Abadía J, Vázquez S, Rellán-Álvarez R, El-Jendoubi H, Abadía A, Álvarez-Fernández A, López-Millán A-F (2011) Towards a knowledge-based correction of iron chlorosis. Plant Physiol Biochem 49:471–482PubMedCrossRefPubMedCentralGoogle Scholar
- Akram S, Siddiqui MN, Hussain BMN, Bari MAA, Mostofa MG, Hossain MA, Tran LSP (2017) Exogenous glutathione modulates salinity tolerance of soybean [Glycine max (L.) Merrill] at reproductive stage. J Plant Growth Regul 36:877–888CrossRefGoogle Scholar
- Alhendawi RA (2011) Comparisons between effects of bicarbonate and high pH on iron uptake, FeIII reducing capacity of the roots, PEP carboxylase activity, organic acid composition and cation-anion balance of the xylem sap of maize seedlings. Am J Plant Nutr Fertiliz Technol 1:36–47CrossRefGoogle Scholar
- Álvarez-Fernández A, Paniagua P, Abadía J, Abadía A (2003) Effects of Fe deficiency chlorosis on yield and fruit quality in peach (Prunus persica L. Batsch). J Agric Food Chem 51:5738–5744PubMedCrossRefPubMedCentralGoogle Scholar
- Álvarez-Fernández A, Melgar JC, Abadía J, Abadía A (2011) Effects of moderate and severe iron deficiency chlorosis on fruit yield, appearance and composition in pear (Pyrus communis L.) and peach (Prunus persica L. Batsch). Environ Exp Bot 71:280–286CrossRefGoogle Scholar
- Álvarez-Parrilla E, de la Rosa LA, Amarowicz R, Shahidi F (2011) Antioxidant activity of fresh and processed Jalapeño and Serrano peppers. J Agric Food Chem 59:163–173PubMedCrossRefPubMedCentralGoogle Scholar
- Amirbahman A, Sigg L, von Gunten U (1997) Reductive dissolution of Fe(III) (hydr)oxides by cysteine: kinetics and mechanism. J. Colloid Interf Sci 194:194–206CrossRefGoogle Scholar
- Andaluz S, Rodríguez-Celma J, Abadía A, Abadía J, López-Millán A-F (2009) Time course induction of several key enzymes in Medicago truncatula roots in response to Fe deficiency. Plant Physiol Biochem 47:1082–1088PubMedCrossRefPubMedCentralGoogle Scholar
- AOAC (2000) Official methods of analysis. Association of Analytical Chemists, Washington, p 334Google Scholar
- Arias-Baldrich C, Bosch N, Begines D, Feria AB, Monreal JA, García-Mauriño S (2015) Proline synthesis in barley under iron deficiency and salinity. J Plant Physiol 183:121–129PubMedCrossRefPubMedCentralGoogle Scholar
- Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15PubMedPubMedCentralCrossRefGoogle Scholar
- Astolfi S, Pii Y, Terzano R, Mimmo T, Celletti S, Allegretta I, Lafiandra D, Cesco S (2018) Does Fe accumulation in durum wheat seeds benefit from improved whole-plant sulfur nutrition? J Cereal Sci 83:74–82CrossRefGoogle Scholar
- Bardsley CE, Lancaster JD (1962) Determination of reserve Sulphur and soluble sulphate in soils. Soil Sci Soc Am Proc 24:265–268CrossRefGoogle Scholar
- Barreira JCM, Visnevschi-Necrasov T, Nunes E, Cunha SC, Pereira G, Oliveira MBPP (2015) Medicago spp. as potential sources of bioactive isoflavones: characterization according to phylogenetic and phenologic factors. Phytochemistry 116:230–238PubMedCrossRefPubMedCentralGoogle Scholar
- Bates L, Waldren R, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207CrossRefGoogle Scholar
- Batth R, Jain M, Kumari S, Mustafiz A (2017) Glyoxalase system: a glutathione-dependent pathway for abiotic stress tolerance in plants. In: Glutathione in plant growth, development, and stress tolerance. Springer International Publishing, Cham, pp 235–263CrossRefGoogle Scholar
- Bauhus J, Messier C (1999) Evaluation of fine root length and diameter measurements obtained using RHIZO image analysis. Agron J 91:142–147CrossRefGoogle Scholar
- Ben Abdallah H, Mai HJ, Álvarez-Fernández A, Abadía J, Bauer P (2017) Natural variation reveals contrasting abilities to cope with alkaline and saline soil among different Medicago truncatula genotypes. Plant Soil 418:45–60CrossRefGoogle Scholar
- Benton-Jones J, Wolf B, Mills HA (1991) Plant analysis handbook: a practical sampling, preparation, analysis, and interpretation guide. Micro-Macro-Publishing, AthensGoogle Scholar
- Bonneville S, Van Cappellen P, Behrends T (2004) Microbial reduction of iron(III) oxyhydroxides: effects of mineral solubility and availability. Chem Geol 212:255–268CrossRefGoogle Scholar
- Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedPubMedCentralCrossRefGoogle Scholar
- Briat JF, Dubos C, Gaymard F (2015) Iron nutrition, biomass production, and plant product quality. Trends Plant Sci 20:33–40PubMedCrossRefPubMedCentralGoogle Scholar
- Carlberg I, Mannervik B (1985) Glutathione reductase. Meth Enzymol 113:484–490PubMedCrossRefPubMedCentralGoogle Scholar
- Celletti S, Paolacci AR, Mimmo T, Pii Y, Cesco S, Ciaffi M, Astolfi S (2016) The effect of excess sulfate supply on iron accumulation in three graminaceous plants at the early vegetative phase. Environ Exp Bot 128:31–38CrossRefGoogle Scholar
- Cheng MC, Ko K, Chang WL, Kuo WC, Chen GH, Lin TP (2015) Increased glutathione contributes to stress tolerance and global translational changes in Arabidopsis. Plant J 83:926–939PubMedCrossRefPubMedCentralGoogle Scholar
- Connorton JM, Balk J, Rodríguez-Celma J (2017) Iron homeostasis in plants. A brief overview Metallomics 9:813–823PubMedPubMedCentralGoogle Scholar
- El Jendoubi H, Melgar JC, Álvarez-Fernández A, Sanz M, Abadía A, Abadía J (2011) Setting good practices to assess the efficiency of iron fertilizers. Plant Physiol Biochem 49:483–488PubMedCrossRefPubMedCentralGoogle Scholar
- Farag MA, Hufman D, Lei Z, Summer LW (2007) Metabolic profiling and systematic identification of flavonoids and isoflavonoids in roots and cell cultures of Medicago truncatula using HPLC–UV–ESI-MS and GC–MS. Phytochemistry 68:342–354PubMedCrossRefPubMedCentralGoogle Scholar
- Filippou P, Antoniou C, Yelamanchili S, Fotopoulos V (2012) NO loading: efficiency assessment of five commonly used application methods of sodium nitroprusside in Medicago truncatula plants. Plant Physiol Biochem 60:115–118PubMedCrossRefPubMedCentralGoogle Scholar
- Frendo P, Gallesi D, Turnbull R, Van de Sype G, Hérouart D, Puppo A (1999) Localization of glutathione and homoglutathione in Medicago truncatula is correlated to a differential expression of genes involved in their synthesis. Plant J 17:215–219CrossRefGoogle Scholar
- Gao Y, Tian Q, Zhang WH (2014) Systemic regulation of sulfur homeostasis in Medicago truncatula. Planta 239:79–96PubMedCrossRefPubMedCentralGoogle Scholar
- Gheshlaghi Z, Khorassani R, Abadía J, Kafi M, Fotovat A (2019) Glutathione foliar fertilisation prevents lime-induced iron chlorosis in soil grown Medicago scutellata. J Plant Nutr Soil Sci, in press (doi: https://doi.org/10.1002/jpln.2018006692)
- Ghorbani M (2013) The economic geology of Iran. Springer, Mineral deposits and natural resourcesCrossRefGoogle Scholar
- Goławska S, Łukasik I, Kapusta T, Janda B (2010) Analysis of flavonoids content in alfalfa Ecol Chem En A 17:261–267Google Scholar
- Hasanuzzaman M, Nahar K, Anee TI, Fujita M (2017) Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiol Mol Biol Plant 23:249–268CrossRefGoogle Scholar
- Heidari M, Sarani S (2012) Growth, biochemical components and ion content of chamomile (Matricaria chamomilla L.) under salinity stress and iron deficiency. J Saudi Soc Agric Sci 11:37–42Google Scholar
- Herrmann KM (1995) The shikimate pathway as an entry to aromatic secondary metabolism. Plant Physiol 107:2–7CrossRefGoogle Scholar
- Hindt MN, Guerinot ML (2012) Getting a sense for signals: regulation of the plant iron deficiency response. Biochim Biophys Acta 1823:1521–1530PubMedPubMedCentralCrossRefGoogle Scholar
- Innocenti G, Pucciariello C, Le Gleuher M, Hopkins J, de Stefano M, Delledonne M, Frendo P (2007) Glutathione synthesis is regulated by nitric oxide in Medicago truncatula roots. Planta 225:1597–1602PubMedCrossRefPubMedCentralGoogle Scholar
- Jelali N, Wissal M, Dell’Orto M, Abdelly C, Gharsalli M, Zocchi G (2010) Changes of metabolic responses to direct and induced Fe deficiency of two Pisum sativum cultivars. Environ Exp Bot 68:238–246CrossRefGoogle Scholar
- Jiménez S, Morales F, Abadía A, Abadía J, Moreno MA, Gogorcena Y (2009) Elemental 2-D mapping and changes in leaf iron and chlorophyll in response to iron re-supply in iron-deficient GF 677 peach-almond hybrid. Plant Soil 315:93–106CrossRefGoogle Scholar
- Karimi E, Oskoueian E, Oskoueian A, Omidvar V, Hendra R, Nazeran H (2013) Insight into the functional and medicinal properties of Medicago sativa (alfalfa) leaves extract. J Med Plants Res 7:290–297Google Scholar
- Katyal JC, Sharma BD (1984) Some modification in the assay of Fe2+ in 1-10, o-phenanthroline extracts of fresh plant tissues. Plant Soil 79:449–450CrossRefGoogle Scholar
- Koen E, Szymańska K, Klinguer A, Dobrowolska G, Besson-Bard A, Wendehenne D (2012) Nitric oxide and glutathione impact the expression of iron uptake- and iron transport-related genes as well as the content of metals in A. thaliana plants grown under iron deficiency. Plant Signal Behav 7:1246–1250PubMedPubMedCentralCrossRefGoogle Scholar
- Kovacs I, Durner J, Lindermayr C (2015) Crosstalk between nitric oxide and glutathione is required for NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1)-dependent defense signaling in Arabidopsis thaliana. New Phytol 208:860–872PubMedCrossRefPubMedCentralGoogle Scholar
- Kovacs I, Holzmeister C, Wirtz M, Geerlof A, Fröhlich T, Römling G, Kuruthukulangarakoola GT, Linster E, Hell R, Arnold GJ, Durner J, Lindermayr C (2016) ROS-mediated inhibition of S-nitrosoglutathione reductase contributes to the activation of antioxidative mechanisms. Front Plant Sci 10:1669Google Scholar
- Ksouri R, M’rah S, Gharsalli M, Lachaâl M (2006) Biochemical responses to true and bicarbonate-induced iron deficiency in grapevine genotypes. J. Plant Nutr 29:305–315CrossRefGoogle Scholar
- Lindsay WL, Schwab AP (1982) The chemistry of iron in soils and its availability to plants. J Plant Nutr 5:821–840CrossRefGoogle Scholar
- Liu C, Zachara JM, Foster NS, Strickland J (2007) Kinetics of reductive dissolution of hematite by bioreduced anthraquinone-2,6-disulfonate. Environ Sci Technol 41:7730–7735PubMedCrossRefPubMedCentralGoogle Scholar
- López-Millán AF, Morales F, Gogorcena Y, Abadía A, Abadía J (2001a) Iron resupply-mediated deactivation of root responses to iron deficiency in sugar beet. Aust J Plant Physiol 28:171–180Google Scholar
- López-Millán A-F, Morales F, Abadía A, Abadía J (2001b) Changes induced by Fe deficiency and Fe resupply in the organic acid metabolism of sugar beet (Beta vulgaris) leaves. Physiol Plant 112:31–38PubMedCrossRefPubMedCentralGoogle Scholar
- Lucena JJ (2003) Fe chelates for remediation of Fe chlorosis in strategy I plants. J Plant Nutr 26:1969–1984CrossRefGoogle Scholar
- Luwe M, Takahama U, Heber U (1993) Role of ascorbate in detoxifying ozone in the apoplast of spinach (Spinacia oleracea L.) leaves. Plant Physiol 101:969–976PubMedPubMedCentralCrossRefGoogle Scholar
- M’sehli W, Youssfi S, Donnini S, Dell'Orto M, De Nisi P, Zocchi G, Abdelly C, Gharsalli M (2008) Root exudation and rhizosphere acidification by two lines of Medicago ciliaris in response to lime-induced iron deficiency. Plant Soil 312:151–162CrossRefGoogle Scholar
- M’sehli W, Dell’Orto M, De Nisi P, Donnini S, Abdelly C, Zocchi G, Gharsalli M (2009a) Responses of two ecotypes of Medicago ciliaris to direct and bicarbonate-induced iron deficiency conditions. Acta Physiol Plant 31:667–673CrossRefGoogle Scholar
- M’sehli W, Dell’Orto M, Donnini S, De Nisi P, Zocchi G, Abdelly C, Gharsalli M (2009b) Variability of metabolic responses and antioxidant defence in two lines of Medicago ciliaris to Fe deficiency. Plant Soil 320:219–230CrossRefGoogle Scholar
- M’sehli W, Houmani H, Donnini S, Zocchi G, Abdelly C, Gharsalli M (2014) Iron deficiency tolerance at leaf level in Medicago ciliaris plants. Am J Plant Sci 05:2541–2553CrossRefGoogle Scholar
- Marschner P (2012) Marschner’s Mineral Nutrition of Higher Plants, Ed. 3. Academic Press, San DiegoCrossRefGoogle Scholar
- Matamoros MA, Moran JF, Iturbe-Ormaetxe I, Rubio MC, Becana M (1999) Glutathione and homoglutathione synthesis in legume root nodules. Plant Physiol 121:879–888PubMedPubMedCentralCrossRefGoogle Scholar
- May M, Vernoux T, Leaver C, Van Montagu M, Inze’D (1998) Glutathione homeostasis in plants: implications for environmental sensing and plant development. J Exp Bot 49: 649–667Google Scholar
- Medina-Juarez LA, Molina-Quijada DMA, Del-Toro-Sánchez CL, González-Aguilar GA, Gámez-Meza N (2012) Antioxidant activity of peppers (Capsicum annuum L.) extracts and characterization of their phenolic constituents. Interciencia 37:588–593Google Scholar
- Mollering H (1985) L-malate. In: Methods of Enzymatic Analysis (Bergmeyer HU, ed.), 3rd ed., Vol. VII, pp. 39–47, VCH Publishers (UK) Ltd., Cambridge, UKGoogle Scholar
- Msilini N, Attia H, Rabhi M, Karray N, Lachaâl M, Ouerghi Z (2012) Responses of two lettuce cultivars to iron deficiency. Exp Agric 48:523–535CrossRefGoogle Scholar
- Nahar K, Hasanuzzaman M, Alam MM, Fujita M (2015a) Glutathione-induced drought stress tolerance in mung bean: coordinated roles of the antioxidant defence and methylglyoxal detoxification systems. AoB Plants 7:plv069PubMedPubMedCentralCrossRefGoogle Scholar
- Nahar K, Hasanuzzaman M, Alam MM, Fujita M (2015b) Exogenous glutathione confers high temperature stress tolerance in mung bean (Vigna radiata L.) by modulating antioxidant defense and methylglyoxal detoxification system. Environ Exp Bot 112:44–54CrossRefGoogle Scholar
- Nakano Y, Asada K (1981) Hydrogen-peroxide is scavenged by ascorbate-specific peroxidase in spinach-chloroplasts. Plant Cell Physiol 22:867–880Google Scholar
- Nikolic M, Römheld V (2002) Does high bicarbonate supply to roots change availability of iron in the leaf apoplast? Plant Soil 241:67–74CrossRefGoogle Scholar
- Pérez-Sanz A, Lucena JJ (1995) Synthetic iron oxides as sources of Fe in a hydroponic culture of sunflower. In: Iron Nutrition in Soils and Plants 241–246 (Abadía J ed.), Kluwer Academic Publishers, The NetherlandsGoogle Scholar
- Rabhi M, Barhoumi Z, Ksouri R, Abdelly C, Gharsalli M (2007) Interactive effects of salinity and iron deficiency in Medicago ciliaris. C R Biol 330:779–788PubMedCrossRefPubMedCentralGoogle Scholar
- Ramírez L, Bartoli CG, Lamattina L (2013) Glutathione and ascorbic acid protect Arabidopsis plants against detrimental effects of iron deficiency. J Exp Bot 64:3169–3178PubMedCrossRefPubMedCentralGoogle Scholar
- Rellán-Álvarez R, Hernández LE, Abadía J, Álvarez-Fernández A (2006) Direct and simultaneous determination of reduced and oxidized glutathione and homoglutathione by liquid chromatography-electrospray/mass spectrometry in plant tissue extracts. Anal Biochem 356:254–264PubMedCrossRefPubMedCentralGoogle Scholar
- Rios JJ, Carrasco-Gil S, Abadía A, Abadía J (2016) Using Perl’s staining to trace the iron uptake pathway in leaves of a prunus rootstock treated with iron foliar fertilizers. Front Plant Sci 7:893PubMedPubMedCentralCrossRefGoogle Scholar
- Rodrigues F, Almeida I, Sarmento B, Amaral MH, Oliveira MBPP (2014) Study of the isoflavone content of different extracts of Medicago spp. as potential active ingredient. Industrial Crop Prod 57:110–115CrossRefGoogle Scholar
- Rodríguez-Celma J, Lattanzio G, Grusak MA, Abadía A, Abadía J, López-Millán A-F (2011a) Root responses of Medicago truncatula plants grown in two different iron deficiency conditions: changes in root protein profile and riboflavin biosynthesis. J Proteome Res 10:2590–2601PubMedCrossRefPubMedCentralGoogle Scholar
- Rodríguez-Celma J, Vázquez-Reina S, Orduna J, Abadía A, Abadía J, Álvarez-Fernández A, López-Millán A-F (2011b) Characterization of flavins in roots of Fe-deficient strategy in plants, with a focus on Medicago truncatula. Plant Cell Physiol 52:2173–2189PubMedCrossRefPubMedCentralGoogle Scholar
- Sabir A, Ekbic H (2010) Response of four grapevine (Vitis spp.) genotypes to direct or bicarbonate-induced iron deficiency. Spanish J Agric Res 8:823–829CrossRefGoogle Scholar
- Santos CS, Serrão I, Vasconcelos MW (2016) Comparative analysis of iron deficiency chlorosis responses in soybean (Glycine max) and barrel medic (Medicago truncatula). Rev Ciências Agrárias 39:538–549CrossRefGoogle Scholar
- Schwertmann U (1991) Solubility and dissolution of iron oxides. Plant Soil 130:1–25CrossRefGoogle Scholar
- Sieh D, Krajinski F, Hoefgen R, Devers EA, Watanabe M, Brueckner F (2012) The arbuscular mycorrhizal symbiosis influences sulfur starvation responses of Medicago truncatula. New Phytol 197:606–616PubMedCrossRefPubMedCentralGoogle Scholar
- Silva L, Carvalho H (2013) Possible role of glutamine synthetase in the NO signaling response in root nodules by contributing to the antioxidant defenses. Front Plant Sci 4:1–8CrossRefGoogle Scholar
- Sisó-Terraza P, Luis-Villarroya A, Fourcroy P, Briat JF, Abadía A, Gaymard F, Abadía J, Álvarez-Fernández A (2016a) Accumulation and secretion of coumarinolignans and other coumarins in Arabidopsis thaliana roots in response to iron deficiency at high pH. Front Plant Sci 7:1–22CrossRefGoogle Scholar
- Sisó-Terraza P, Rios JJ, Abadía J, Abadía A, Álvarez-Fernández A (2016b) Flavins secreted by roots of iron-deficient Beta vulgaris enable mining of ferric oxide via reductive mechanisms. New Phytol 209:733–745PubMedCrossRefPubMedCentralGoogle Scholar
- Stochmal A, Kowalska I, Janda B, Perrone A, Piacente S, Oleszek W (2009) Gentisic acid conjugates of Medicago truncatula roots. Phytochemistry 70:1272–1276PubMedCrossRefPubMedCentralGoogle Scholar
- Vadas TM, Ahner BA (2009) Extraction of lead and cadmium from soils by cysteine and glutathione. J Environ Qual 38:2245–2252PubMedCrossRefPubMedCentralGoogle Scholar
- Vergauwen B, Verstraete K, Senadheera DB, Dansercoer A, Cvitkovitch DG, Guédon E, Savvides SN (2013) Molecular and structural basis of glutathione import in gram-positive bacteria via GshT and the cystine ABC importer TcyBC of Streptococcus mutans. Mol Microbiol 89:288–303PubMedCrossRefPubMedCentralGoogle Scholar
- Visnevschi-Necrasov T, Barreira JCM, Cunha SC, Pereira G, Nunes E, Oliveira MBPP (2014) Advances in isoflavone profile characterisation using matrix solid-phase dispersion coupled to HPLC/DAD in Medicago species. Phytochem Anal 26:40–46PubMedCrossRefPubMedCentralGoogle Scholar
- Wang JW, Zheng LP, Wu JY, Tan RX (2006) Involvement of nitric oxide in oxidative burst phenylalanine ammonia-lyase activation and taxol production induced by low-energy ultrasound in Taxus yunnanensis cell suspension cultures. Nitric Oxide Biol Chem 15:351–358CrossRefGoogle Scholar
- Wang X, Chen W, Zhou Y, Han J, Zhao J, Shi D, Yang C (2012) Comparison of adaptive strategies of alfalfa (Medicago sativa L.) to salt and alkali stresses. Aust J Crop Sci 6:309–315Google Scholar
- Waters BM, Amundsen K, Graef G (2018) Gene expression profiling of iron deficiency chlorosis sensitive and tolerant soybean indicates key roles for phenylpropanoids under alkalinity stress. Front Plant Sci 9:10PubMedPubMedCentralCrossRefGoogle Scholar
- Wingate VPM, Lawton MA, Lamb CJ, Dalton D, Minchin F, Iturbe-Ormaetxe I, Rubio M, Moran J, Gordon A, Becana M (1988) Glutathione causes a massive and selective induction of plant defense genes. Plant Physiol 87:206–210PubMedPubMedCentralCrossRefGoogle Scholar
- Zaharieva TB, Abadía J (2003) Iron deficiency enhances the levels of ascorbate, glutathione, and related enzymes in sugar beet roots. Protoplasma 221:269–275PubMedPubMedCentralGoogle Scholar
- Zaharieva T, Yamashita K, Matsumoto H (1999) Iron deficiency induced changes in ascorbate content and enzyme activities related to ascorbate metabolism in cucumber roots. Plant Cell Physiol 40:273–280CrossRefGoogle Scholar
- Zaharieva TB, Gogorcena Y, Abadía J (2004) Dynamics of metabolic responses to iron deficiency in sugar beet roots. Plant Sci 166:1045–1050CrossRefGoogle Scholar
- Zamboni A, Celletti S, Zenoni S, Astolfi S, Varanini Z (2017) Root physiological and transcriptional response to single and combined S and Fe deficiency in durum wheat. Environ Exp Bot 143:172–184CrossRefGoogle Scholar
- Zhou B, Guo Z, Xing J, Huang B (2005) Nitric oxide is involved in abscisic acid-induced antioxidant activities in Stylosanthes guianensis. J Exp Bot 56:3223–3228PubMedCrossRefPubMedCentralGoogle Scholar
- Zuchi S, Watanabe M, Hubberten H-M, Bromke M, Osorio S, Fernie AR, Celletti C, Paolacci AR, Catarcione G, Ciaffi M, Hoefgen R, Astolfi S (2015) The interplay between sulfur and iron nutrition in tomato. Plant Physiol 169:2624–2639PubMedPubMedCentralGoogle Scholar