Plant and Soil

, Volume 444, Issue 1–2, pp 351–363 | Cite as

Root silicification of grasses and crops from the Pampean region and its relevance to silica and silicophytolith content of soils

  • Micaela PaolicchiEmail author
  • María Laura Benvenuto
  • Mariana Fernández Honaine
  • Margarita Osterrieth
Regular Article



Silicophytoliths contribute to the pool of amorphous silica that is incorporated into the soils acting as intermediary in the biogeochemical cycle of silicon. Most studies focus their attention in the production of aerial parts of plants but not in roots. In order to advance into the knowledge about the relevance of root amorphous silica in soil Si cycle, we studied the silicophytolith content of roots from grasses and crops, and from soil’s roots of different sites from Pampean region, Argentina, one of the most fertile and used for agricultural practices.


Roots from three crops and seven grasses and from soils under three different uses were studied. Silicophytoliths were extracted by a calcination technique.


All the species produced silicophytoliths derived from vascular and/or endodermal tissues. Silicophytolith content was higher in Pampean grasses (6.34–15.38%) than in crops (0.01–1.58%). Root silicophytolith content in the pasture was 10 times higher than in the other sites.


The potential input of root silica to soils is related to the type and cover of vegetation, the amount of roots in soils and the silicophytoliths accumulated in roots. Results suggested that root silicophytoliths should be consider in future studies of biogeochemical cycle of Si.


Phytolith Roots Grasses Crops SE Buenos Aires Province Soil 



Content of roots present in soil samples


The content of silicophytoliths in soil roots


The input of silicophytolith from roots to soils



Fieldwork was supported by National University of Mar del Plata (UNMdP), Buenos Aires, Argentina (EXA 839/17) and Fund for Scientific and Technology Research (FONCyT - PICT 2495/17). A fellowship from National Council for Scientific and Technical Research (UNMdP-CONICET) to Micaela Paolicchi is acknowledged.


  1. Albert RM, Bamford MK, Cabanes D (2006) Taphonomy of phytoliths and macroplants in different soils from Olduvai Gorge (Tanzania) and the application to Plio-Pleistocene palaeoanthropological samples. Quat Int:78–94. Google Scholar
  2. Alvarez MF, Osterrieth M (2018) Submicroscopy of aggregates of Luvic Phaeozems under different land uses in the southeast of the Buenos Aires Province, Argentina. Eurasian Soil Sci:1487–1496. Google Scholar
  3. Alvarez MF, Osterrieth M, del Río JL (2012) Changes on aggregates morphology and roughness of induced by different uses of typical Argiudolls, Buenos Aires province, Argentina. Soil Tillage Res 119:38–49. CrossRefGoogle Scholar
  4. Bennett DM (1982) Silicon deposition in the roots of Hordeum sativum Jess, Avena sativa L and Triticum aestivum L, Ann Bot: 239–245. doi: Google Scholar
  5. Bertoldi de Pomar H (1975) Los silicofitolitos: sinopsis de su conocimiento. Darwiniana:173–206 Accessed 22 March 2018
  6. Borrelli N, Osterrieth M, Marcovecchio J (2008) Interrelations of vegetal cover, silicophytolith content and pedogenesis of typical Argiudolls of the Pampean plain, Argentina. Catena:146–153. Google Scholar
  7. Borrelli N, Álvarez MF, Osterrieth M, Marcovecchio JE (2010) Silica content in soil solution and its relation with phytolith weathering and silica biogeochemical cycle in typical Argiudolls of the Pampean plain, Argentina:a Preliminary Study. J Soils Sediments:983–994. Google Scholar
  8. Burgos JJ, Vidal AL (1951) Los climas de la República Argentina según la nueva clasificación de Thornthwaite. Meteor-Forschung:3–32Google Scholar
  9. Cabrera A (1976) Regiones fitogeográficas de la Argentina. Enciclopedia Argentina de Agricultura y Ganadería, Tomo II, Acme SACI, Buenos AiresGoogle Scholar
  10. Camargo OA, Alleoni LRF (1997) Compactacan do solo e o dsenvolvimiento das plantas. Escola Superior de Agricultura Luiz de Querioz, Piracicaba, p 132Google Scholar
  11. Cornelis JT, Titeux H, Ranger J, Delvaux B (2011) Identification and distribution of the readily soluble silicon pool in a temperate forest soil below three distinct tree species. Plant Soil:369–378. Google Scholar
  12. Derry LA, Kurtz AC, Ziegler K, Chadwick OA (2005) Biological control of terrestrial silica cycling and export fluxes to watersheds. Nature:728–731. PubMedGoogle Scholar
  13. Elger A, Lemoine DG, Fenner M, Hanley ME (2009) Plant ontogeny and chemical defence: older seedlings are better defended. Oikos:767–773. Google Scholar
  14. Epstein E (1994) The anomaly of silicon in plant biology. Proc Natl Acad Sci:11–17. Google Scholar
  15. Epstein E (1999) Silicon. Annu Rev Plant Physiol Plant Mol Biol:641–644. PubMedGoogle Scholar
  16. Fahn A (1967) Plant Anatomy. New York, Pergamon Press, OxfordGoogle Scholar
  17. Farmer VC, Delbos E, Miller JD (2005) The role of phytolith formation and dissolution in controlling concentrations of silica in soil solutions and streams. Geoderma:71–79. Google Scholar
  18. Fernández Honaine M, Benvenuto ML, Borrelli NL, Osterrieth M (2016) Early Silicification of leaves and roots of seedlings of a panicoid grass grown under different conditions: anatomical relations and structural role. Plant Biol:1025–1030. PubMedGoogle Scholar
  19. Fernández Honaine M, Benvenuto ML, Osterrieth M (in press) An easy technique for silicophytolith visualization in plants through tissue clearing and immersion oil mounting. Boletín de la Sociedad Argentina de BotánicaGoogle Scholar
  20. Fraysse F, Pokrovsky OS, Schott J, Meunier JD (2006) Surface properties, solubility and dissolution kinetics of bamboo phytoliths. Geochim Cosmochim:1939–1951. Google Scholar
  21. Fredlund GG, Tieszen LL (1997) Phytolith and carbon isotope evidence for Late Quaternary vegetation and climate change in the southern Black Hills, South Dakota. Quat Res:206–217. Google Scholar
  22. Geis JW (1978) Biogenic opal in three species of Gramineae. Ann Bot:1119–1129. Google Scholar
  23. Gocke M, Liang W, Sommer M, Kuzyakov Y (2013) Silicon uptake by wheat: effects of Si pools and pH. J Plant Nutr Soil Sci:1–10. Google Scholar
  24. Guntzer F, Keller C, Poulton PR, McGrath SP, Meunier JD (2012) Long-term removal of wheat straw decreases soil amorphous silica at Broadbalk, Rothamsted. Plant Soil:173–184. Google Scholar
  25. Hernandez-Apaolaza L (2014) Can silicon partially alleviate micronutrient deficiency in plants? A review. Planta:447–458. Google Scholar
  26. Hiweris SO (1987) Nature of resistance to Striga hermonthica (Del.) Benth. parasitism in some Sorghum vulgare (Pers.) Cultivars. Weed Res:305–311. Google Scholar
  27. Hodson MJ (2016) The development of phytoliths in plants and its influence on their chemistry and isotopic composition. Implications for palaeoecology and archaeology. J Archaeol Sci:62–69. Google Scholar
  28. Hodson MJ, Sangster AG (1989) Subcellular localization of mineral deposits in the roots of wheat (Triticum aestivum L.). Protoplasma:19–32. Google Scholar
  29. Hodson MJ, White PJ, Mead A, Broadly MR (2005) Phylogenetic variation in the silicon composition of plants. Ann Bot:1027–1046. PubMedCentralGoogle Scholar
  30. Hussain MI, González L, Reigosa MJ (2011) Allelopathic potential of Acacia melanoxylon on the germination and root growth of native species. Weed Biol Manag:18–28. Google Scholar
  31. Ikegami N, Satake T, Nagayama Y, Kazuyuki I (2014) Changes in silica in litterfall and available silica in the soil of forests invaded by bamboo species (Phyllostachys pubescens and P. bambusoides) in western Japan. Soil Sci Plant Nutr:731–739. Google Scholar
  32. INTA (1989) Mapa de suelos de la provincia de Buenos Aires, E 1: 500000. SAGyP-INTA, Buenos AiresGoogle Scholar
  33. Jones LHP, Handreck KA (1967) Silica in soils, plants, and animals. In: Norman AG (ed) Adv agron. Academic Press, New York, pp 107–149. CrossRefGoogle Scholar
  34. Labouriau LG (1983) Phytolith work in Brasil, a mini-review. Phytolitharien Newsletter:6–11Google Scholar
  35. Lux A, Luxová M, Morita S, Abe J, Inanaga S (1999) Endodermal silicification in developing seminal roots of lowland and upland cultivars of rice (Oryza sativa L.). Can J Bot:955–960. Google Scholar
  36. Lux A, Luxová M, Hattori T, Inanaga S, Sugimoto Y (2002) Silicification in sorghum (Sorghum bicolor) cultivars with different drought tolerance. Physiol Plant:87–92. PubMedGoogle Scholar
  37. Lux A, Luxová M, Abe J, Morita S, Inanaga S (2003a) Silicification of bamboo (Phyllostachys heterocycla Mitf.) root and leaf. In: Abe J (ed) Roots: the dynamic Interface between plants and the earth. Springer, Dordrecht, pp 85–91Google Scholar
  38. Lux A, Luxová M, Abe J, Tanimoto E, Hattori T, Inanaga S (2003b) The dynamics of silicon deposition in the sorghum root endodermis. New Phytol:437–441. Google Scholar
  39. Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr:11–18. Google Scholar
  40. Ma JF, Takahashi E (2002) Soil, fertilizer, and plant silicon research in Japan. Elsevier, AmsterdamGoogle Scholar
  41. Ma JF, Yamaji N, Mitani-Ueno N (2011) Transport of silicon from roots to panicles in plants. Proc Jpn Acad Ser B:377–385. Google Scholar
  42. Ma D, Sun D, Wang C, Qin H, Ding H, Li Y, Guo T (2016) Silicon application alleviates drought stress in wheat through transcriptional regulation of multiple antioxidant defense pathways. J Plant Growth Regul:1–10. Google Scholar
  43. Madella M, Alexandre A, Ball T (2005) International code for Phytolith nomenclature 1.0. Ann Bot:253–260. PubMedPubMedCentralGoogle Scholar
  44. Maguire TJ, Templer PH, Battles JJ, Fulweiler RW (2017) Winter climate change and fine root biogenic silica in sugar maple trees (Acer saccharum): implications for silica in the Anthropocene. J Geophys Res Biogeosci:708–715. Google Scholar
  45. Massey FP, Ennos AR, Hartley SE (2007) Herbivore specific induction of silica-based plant defences. Oecologia:677–683. PubMedGoogle Scholar
  46. Materechera SA, Alston AM, Kirby JM, Dexter AR (1992) Influence of root diameter on the penetration of seminal roots into a compacted subsoil. Plant Soil:297–303.
  47. McNaughton SJ, Tarrants JL, McNaughton MM, Davis RH (1985) Silica as a defense against herbivory and a growth promotor in African grasses. Ecology:528–535. Google Scholar
  48. Montti L, Fernández Honaine M, Osterrieth M, Graciano Ribeiro D (2009) Phytolith analysis of Chusquea ramosissima Lindm. (Poaceae: Bambusoideae) and associated soils. Quat Int:80–89. Google Scholar
  49. Motomura H, Fujii T, Suzuki M (2000) Distribution of silicified cells in the leaf blades of Pleioblastus chino (Franchet et Savatier) Makino (Bambusoideae). Ann Bot:751–757. Google Scholar
  50. Osterrieth M, Madella M, Zurro D, Álvarez MF (2009) Taphonomical aspects of silicaphytoliths in the loess sediments of the Argentinean pampas. Quat Int 193:70–79. CrossRefGoogle Scholar
  51. Osterrieth M, Borrelli N, Álvarez MF, Fernández Honaine M (2015) Silica biogeochemical cycle in temperate ecosystems of the pampean plain, Argentina. J S Am Earth Sci:172–179. Google Scholar
  52. Parry DW, Kelso M (1977) The ultrastructure and analytical microscopy of silicon deposits in the roots of Saccharum officinarum (L.). Ann Bot:855–862. Google Scholar
  53. Piperno DR (1988) Phytolith analysis: an archaeological and geological perspective. Academic Press, San DiegoGoogle Scholar
  54. Reynolds J, Lambin X, Massey FP, Reidinger S, Sherratt JA, Smith MJ, White A, Hartley SE (2012) Delayed induced silica defences in grasses and their potential for destabilising herbivore population dynamics. Oecologia:445–456. PubMedGoogle Scholar
  55. Sangster AG (1977) Electron-probe microassay studies of silicon deposits in the roots of two species of Andropogon. Can J Bot 55:880–887. CrossRefGoogle Scholar
  56. Sangster AG (1978) Silicon in the roots of higher plants. Am J Bot:929–935. Google Scholar
  57. Sangster AG, Parry DW (1976) Endodermal silicon deposits and their linear distribution in developing roots of Sorghum bicolor (L.) Moench. Ann Bot: 361–371. Google Scholar
  58. Sangster AG, Parry DW (1981) Ultrastructure of silica in higher plants. In: Simpson TL, Volcani BE (eds) Silicon and siliceous structures in biological systems. Springer, New York, pp 383–407Google Scholar
  59. Scanlan CA, Davies SL (2019) Soil mixing and redistribution by strategic deep tillage in a sandy soil. Soil Tillage Res:139–145. Google Scholar
  60. Schoelynck J, Muller F, Vandevenne F, Bal K, Barao L, Smis A, Opdekamp W, Meire P, Struyf E (2014) Silicon–vegetation interaction in multiple ecosystems: a review. J Veg Sci:301–313. Google Scholar
  61. Servicio Meteorológico Nacional (2010) Estadísticas climatológicas. Publicaciones del Servicio Meteorológico Nacional, Buenos AiresGoogle Scholar
  62. Soil Survey Staff (1996) Keys to soil taxonomy, 7th edn. Department of Agriculture, Washington, D.C.Google Scholar
  63. Soininen EM, Brathen KA, Herranz Jusdado JG, Reidinger S, Hartley SE (2013) More than herbivory: levels of silica-based defences in grasses vary with plant species, genotype and location. Oikos:30–41. Google Scholar
  64. Sommer M, Kaczorek D, Kuzyakov Y, Breuer J (2006) Silicon pools and fluxes in soils and landscapes. A Review. J Plant Nutr Soil Sci:310–329. Google Scholar
  65. Soukup M, Martinka M, Bosnic D, Caplovicova M, Elbaum R, Lux A (2017) Formation of silica aggregates in Sorghum root endodermis is predetermined by cell wall architecture and development. Ann Bot:739–753. PubMedPubMedCentralGoogle Scholar
  66. Tardieu F, Manichon H (1986) Caracterisation en tant que capture d ´eau de l'enracinement du mais en parcelle cultive. II Une methode d'etude de la repartition verticale et horizontale des racine. Agronomie: 415–425. Accessed 22 March 2018
  67. Tubana BS, Tapasya B, Datnoff LE (2016) A review of silicon in soils and plants and its role in US agriculture: history and future perspectives. Soil Sci:393–411.
  68. Twiss PC (1992) Predicted world distribution of C3 and C4 grass phytoliths. In: Rapp G, Mulholland SC (eds) Phytolith systematics. Advances in archaeological and museum science, vol 1. Springer, BostonGoogle Scholar
  69. Wieczorek M, Zub K, Szafranska PA, Ksiazek A, Konarzewski M (2015) Plant–herbivore interactions: silicon concentration in tussock sedges and population dynamics of root voles. Functional Ecology 187–194. Google Scholar
  70. Zar JH (1984) Biostatistical analysis, 2nd edn. Prentice – Hall, INC, New JerseyGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Micaela Paolicchi
    • 1
    • 2
    • 3
    Email author
  • María Laura Benvenuto
    • 1
    • 2
    • 3
  • Mariana Fernández Honaine
    • 1
    • 2
    • 3
  • Margarita Osterrieth
    • 1
    • 2
  1. 1.Instituto de Geología de Costas y del CuaternarioFCEyN, Universidad Nacional de Mar del Plata-Comisión de Investigaciones Científicas de Buenos Aires (CIC)Mar del PlataArgentina
  2. 2.Instituto de Investigaciones Marinas y Costeras (IIMyC)FCEyN, Universidad Nacional de Mar del Plata - Consejo Nacional de Investigaciones Científicas y TécnicasMar del PlataArgentina
  3. 3.CONICETBuenos AiresArgentina

Personalised recommendations