Increased CO2 efflux due to long-term experimental summer warming and litter input in subarctic tundra – CO2 fluxes at snowmelt, in growing season, fall and winter

  • Tora Finderup Nielsen
  • Nynne Rand Ravn
  • Anders MichelsenEmail author
Regular Article



Soils of northern latitude tundra ecosystems have accumulated large amounts of carbon that might be released as CO2 when temperature rises and the tree-line moves north. We aim to investigate the potential CO2 flux changes at a subarctic tundra heath under changing climate.


We measured daytime ecosystem respiration and photosynthesis at a subarctic heath over a full year under ambient conditions and in factorial long-term (13 years) increased summer temperature and leaf litter addition plots, and in additional short-term (2 years) summer warming plots.


Under ambient conditions the ecosystem was a daytime sink of CO2 in the five warmest months, but a net daytime source in the cold season. Thirteen years of summer warming by 1 °C at soil surface increased CO2 emissions, as daytime respiration increased by 37% and photosynthesis by 29% over the year. Short-term warming likewise increased fluxes. Litter addition also increased the emission of CO2 as ecosystem respiration rose by 21% but photosynthesis remained unchanged. Both warming and litter addition significantly enhanced the amount of green biomass.


This study suggests that in a changed climate subarctic ecosystems will act as a positive feedback source of atmospheric CO2. It shows the significance of CO2 fluxes outside the growing season and demonstrates a cold-season long- but not short-term legacy effect of increased summer warming on CO2 emission.


Carbon dioxide fluxes Climate change NDVI Net ecosystem production Photosynthesis Respiration 



We acknowledge The Danish Council for Independent Research and The Danish National Research Foundation (CENPERM DNRF100) for financial support. The research has additionally received funding from INTERACT (grant agreement No 262693) under the European Community’s Seventh Framework Programme. We thank Marie Glahn for field assistance, Abisko Scientific Research Station for logistic support and access to climatic data and Casper T. Christiansen for internal revision of the manuscript.

Supplementary material

11104_2019_4282_MOESM1_ESM.pdf (743 kb)
ESM 1 (PDF 742 kb)


  1. Abisko Scientific Research Station (2016) Temperature and precipitation data 1913–2015. Available from: Accessed 13 Nov 2012
  2. Arndal MF, Illeris L, Michelsen A, Albert K, Tamstorf M, Hansen BU (2009) Seasonal variation in gross ecosystem production, plant biomass, and carbon and nitrogen pools in five high arctic vegetation types. Arct Antarct Alp Res 41:164–173CrossRefGoogle Scholar
  3. Belshe EF, Schuur EG, Bolker BM (2013) Tundra ecosystems observed to be CO2 sources due to differential amplification of the carbon cycle. Ecol Lett 16:1307–1315CrossRefGoogle Scholar
  4. Bengtson P, Barker J, Grayston SJ (2012) Evidence of a strong coupling between root exudation, C and N availability, and stimulated SOM decomposition caused by rhizosphere priming effects. Ecol Evol 2:1843–1852CrossRefGoogle Scholar
  5. Boelman NT, Stieglitz M, Rueth HM, Sommerkorn M, Griffin KL, Shaver GR, Gamon JA (2003) Response of NDVI, biomass, and ecosystem gas exchange to long-term warming and fertilization in wet sedge tundra. Oecologia 135:414–421CrossRefGoogle Scholar
  6. Brooks PD, Grogan P, Templer PH, Groffman P, Öquist MG, Schimel J (2011) Carbon and nitrogen cycling in snow-covered environments. Geogr Compass 5:682–699CrossRefGoogle Scholar
  7. Campioli M, Leblans N, Michelsen A (2012) Twenty-two years of warming, fertilisation and shading of subarctic heath shrubs promote secondary growth and plasticity but not primary growth. PLoS One 7(4):e34842CrossRefGoogle Scholar
  8. Christiansen CT, Schmidt NM, Michelsen A (2012) High arctic dry heath CO2 exchange during the early cold season. Ecosystems 15:1083–1092CrossRefGoogle Scholar
  9. Collins M, Knutti R, Arblaster J (2013) Long-term climate change: projections, commitents and irreversibility Climate Change 2013: The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM). Cambridge University Press, Cambridge , United Kingdom and New York, NY, USAGoogle Scholar
  10. Crowther TW, Todd-Brown KEO, Rowe CW, Wieder WR, Carey JC, Machmuller MB, Snoek BL, Fang S, Zhou G, Allison SD, Blair JM, Bridgham SD, Burton AJ, Carrillo Y, Reich PB, Clark JS, Classen AT, Dijkstra FA, Elberling B, Emmett BA, Estiarte M, Frey SD, Guo J, Harte J, Jiang L, Johnson BR, Kröel-Dulay G, Larsen KS, Laudon H, Lavallee JM, Luo Y, Lupascu M, Ma LN, Marhan S, Michelsen A, Mohan J, Niu S, Pendall E, Peñuelas J, Pfeifer-Meister L, Poll C, Reinsch S, Reynolds LL, Schmidt IK, Sistla S, Sokol NW, Templer PH, Treseder KK, Welker JM, Bradford MA (2016) Quantifying global soil carbon losses in response to warming. Nature 540:104–108CrossRefGoogle Scholar
  11. Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173CrossRefGoogle Scholar
  12. DeMarco J, Mack MC, Bret-Harte MS (2014a) Effects of arctic shrub expansion on biophysical vs. biogeochemical drivers of litter decomposition. Ecology 95:1861–1875CrossRefGoogle Scholar
  13. DeMarco J, Mack MC, Bret-Harte MS, Burton M, Shaver GR (2014b) Long-term experimental warming and nutrient additions increase productivity in tall deciduous shrub tundra. Ecosphere 5:72CrossRefGoogle Scholar
  14. Elmendorf SC, Henry GHR, Hollister RD, Björk RG, Boulanger-Lapointe N, Cooper EJ, Cornelissen JHC, Day TA, Dorrepaal E, Elumeeva TG, Gill M, Gould WA, Harte J, Hik DS, Hofgaard A, Johnson DR, Johnstone JF, Jónsdóttir IS, Jorgenson JC, Klanderud K, Klein JA, Koh S, Kudo G, Lara M, Lévesque E, Magnússon B, May JL, Mercado-Dı´az JA, Michelsen A, Molau U, Myers-Smith IH, Oberbauer SF, Onipchenko VG, Rixen C, Martin Schmidt N, Shaver GR, Spasojevic MJ, Þórhallsdóttir ÞE, Tolvanen A, Troxler T, Tweedie CE, Villareal S, Wahren CH, Walker X, Webber PJ, Welker JM, Wipf S (2012) Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat Clim Chang 2:453–457CrossRefGoogle Scholar
  15. Fahnestock JT, Jones MH, Brooks PD, Walker DA, Welker JM (1998) Winter and early spring CO2 efflux from tundra communities of northern Alaska. J Geophys Res-Atmos 103:29023–29027CrossRefGoogle Scholar
  16. Grogan P, Chapin FS (1999) Arctic soil respiration: effects of climate and vegetation depend on season. Ecosystems 2:451–459CrossRefGoogle Scholar
  17. Grogan P, Jonasson S (2005) Temperature and substrate controls on intra-annual variation in ecosystem respiration in two subarctic vegetation types. Glob Chang Biol 11:465–475CrossRefGoogle Scholar
  18. Grogan P, Jonasson S (2006) Ecosystem CO2 production during winter in a Swedish subarctic region: the relative importance of climate and vegetation type. Glob Chang Biol 12:1479–1495CrossRefGoogle Scholar
  19. Grogan P, Illeris L, Michelsen A, Jonasson S (2001) Respiration of recently-fixed plant carbon dominates mid-winter ecosystem CO2 production in sub-arctic heath tundra. Clim Chang 50:129–142CrossRefGoogle Scholar
  20. Hartley IP, Garnett M, Sommerkorn M, Hopkins DW, Fletcher BJ, Sloan VL, Wookey PA (2012) A potential loss of carbon associated with greater plant growth in the European Arctic. Nat Clim Chang 2:875–879CrossRefGoogle Scholar
  21. Hicks-Pries CE, van Logtestijn RSP, Schuur EAG, Natali SM, Cornelissen JHC, Aerts R, Dorrepaal E (2015) Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems. Glob Chang Biol 21:4508–4519CrossRefGoogle Scholar
  22. Hicks-Pries CE, Bird JA, Castanha C, Hatton PJ, Torn MS (2017) Long term decomposition: the influence of litter type and soil horizon on retention of plant carbon and nitrogen in soils. Biogeochemistry 134:5–16CrossRefGoogle Scholar
  23. Hobbie SE (1996) Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol Monogr 66:503–522CrossRefGoogle Scholar
  24. Hugelius G, Strauss J, Zubrzycki S, Harden JW, Schuur EAG, Ping CL, Schirrmeister L, Grosse G, Michaelson GJ, Koven CD, O'Donnell JA, Elberling B, Mishra U, Camill P, Yu Z, Palmtag J, Kuhry P (2014) Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11:6573–6593CrossRefGoogle Scholar
  25. Illeris L, Christensen TR, Mastepanov M (2004a) Moisture effects on temperature sensitivity of CO2 exchange in a subarctic heath ecosystem. Biogeochemistry 70:315–330CrossRefGoogle Scholar
  26. Illeris L, Konig SM, Grogan P, Jonasson S, Michelsen A, Ro-Poulsen H (2004b) Growing-season carbon dioxide flux in a dry subarctic heath: responses to long-term manipulations. Arct Antarct Alp Res 36:456–463CrossRefGoogle Scholar
  27. Lafleur PM, Humphreys ER, St Louis VL, Myklebust MC, Papakyriakou T, Poissant L, Barker JD, Pilote M, Swystun KA (2012) Variation in peak growing season net ecosystem production across the Canadian Arctic. Environ Sci Technol 46:7971–7977CrossRefGoogle Scholar
  28. Larsen KS, Grogan P, Jonasson S, Michelsen A (2007a) Respiration and microbial dynamics in two subarctic ecosystems during winter and spring thaw: effects of increased snow depth. Arct Antarct Alp Res 39:268–276CrossRefGoogle Scholar
  29. Larsen KS, Ibrom A, Beier C, Jonasson S, Michelsen A (2007b) Ecosystem respiration depends strongly on photosynthesis in a temperate heath. Biogeochemistry 85:201–213CrossRefGoogle Scholar
  30. Larsen KS, Ibrom A, Jonasson S, Michelsen A, Beier C (2007c) Significance of cold-season respiration and photosynthesis in a subarctic heath ecosystem in northern Sweden. Glob Chang Biol 13:1498–1508CrossRefGoogle Scholar
  31. Leffler AJ, Klein ES, Oberbauer SF, Welker JM (2016) Coupled long-term summer warming and deeper snow alters species composition and stimulates gross primary productivity in tussock tundra. Oecologia 181:287–297CrossRefGoogle Scholar
  32. Lett S, Michelsen A (2014) Seasonal variation in nitrogen fixation and effects of climate change in a subarctic heath. Plant Soil 379:193–204CrossRefGoogle Scholar
  33. Lund M, Falk JM, Friborg T, Mbufong HN, Sigsgaard C, Soegaard H, Tamstorf MP (2012) Trends in CO2 exchange in a high Arctic tundra heath, 2000-2010. J Geophys Res Biogeosci 117:G02001Google Scholar
  34. Mauritz M, Bracho R, Celis G, Hutchings J, Natali SM, Pegoraro E, Salmon VG, Schädel C, Webb EE, Schuur EAG (2017) Nonlinear CO2 flux response to 7 years of experimentally induced permafrost thaw. Glob Chang Biol 23:3646–3666CrossRefGoogle Scholar
  35. McMichael CE, Hope AS, Stow DA, Fleming JB, Vourlitis G, Oechel W (1999) Estimating CO2 exchange at two sites in Arctic tundra ecosystems during the growing season using a spectral vegetation index. Int J Remote Sens 20:683–698CrossRefGoogle Scholar
  36. Metcalfe DB, Hermans TDG, Ahlstrand J, Becker M, Berggren M, Bjork RG, Bjorkman MP, Blok D, Chaudhary N, Chisholm C, Classen AT, Hasselquist NJ, Jonsson M, Kristensen JA, Kumordzi BB, Lee H, Mayor JR, Prevey J, Pantazatou K, Rousk J, Sponseller RA, Sundqvist MK, Tang J, Uddling J, Wallin G, Zhang WX, Ahlstrom A, Tenenbaum DE, Abdi AM (2018) Patchy field sampling biases understanding of climate change impacts across the Arctic. Nat Ecol Evol 2:1443–1448CrossRefGoogle Scholar
  37. Moore TR, Lafleur PM, Poon DMI, Heumann BW, Seaquist JW, Roulet NT (2006) Spring photosynthesis in a cool temperate bog. Glob Chang Biol 12:2323–2335CrossRefGoogle Scholar
  38. Myers-Smith IH, Forbes BC, Wilmking M, Hallinger M, Lantz T, Blok D, Tape KD, Macias-Fauria M, Sass-Klaassen U, Lévesque E, Boudreau S, Ropars P, Hermanutz L, Trant A, Collier LS, Weijers S, Rozema J, Rayback SA, Schmidt NM, Schaepman-Strub G, Wipf S, Rixen C, Ménard CB, Venn S, Goetz S, Andreu-Hayles L, Elmendorf S, Ravolainen V, Welker J, Grogan P, Epstein HE, Hik DS (2011) Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ Res Lett 6:045509CrossRefGoogle Scholar
  39. Natali SM, Schuur EAG, Trucco C, Hicks-Pries CE, Crummer KG, Lopez AFB (2011) Effects of experimental warming of air, soil and permafrost on carbon balance in Alaskan tundra. Glob Chang Biol 17:1394–1407CrossRefGoogle Scholar
  40. Natali SM, Schuur EG, Webb EE, Hicks-Pries CE, Crummer KG (2014) Permafrost degradation stimulates carbon loss from experimentally warmed tundra. Ecology 95:602–608CrossRefGoogle Scholar
  41. Natali SM, Schuur EAG, Mauritz M, Schade JD, Celis G, Crummer KG, Johnston C, Krapek J, Pegoraro E, Salmon VG, Webb EE (2015) Permafrost thaw and soil moisture driving CO2 and CH4 release from upland tundra. J Geophys Res Biogeosci 120:525–537CrossRefGoogle Scholar
  42. Oberbauer SF, Tweedie CE, Welker JM, Fahnestock JT, Henry GHR, Webber PJ, Hollister RD, Walker MD, Kuchy A, Elmore E, Starr G (2007) Tundra CO2 fluxes in response to experimental warming across latitudinal and moisture gradients. Ecol Monogr 77:221–238CrossRefGoogle Scholar
  43. Pedersen EP, Elberling B, Michelsen A (2017) Seasonal variations in methane fluxes in response to summer warming and leaf litter addition in a subarctic heath ecosystem. J Geophys Res Biogeosci 122:2137–2153CrossRefGoogle Scholar
  44. Phillips CA, Elberling B, Michelsen A (2019) Soil carbon and nitrogen stocks and turnover following 16 years of warming and litter addition. Ecosystems 22:110–124CrossRefGoogle Scholar
  45. Post E, Forchhammer MC, Bret-Harte MS, Callaghan TV, Christensen TR, Elberling B, Fox AD, Gilg O, Hik DS, Hoye TT, Ims RA, Jeppesen E, Klein DR, Madsen J, McGuire AD, Rysgaard S, Schindler DE, Stirling I, Tamstorf MP, Tyler NJC, van der Wal R, Welker J, Wookey PA, Schmidt NM, Aastrup P (2009) Ecological dynamics across the Arctic associated with recent climate change. Science 325:1355–1358CrossRefGoogle Scholar
  46. PP Systems (2018) EGM-5 portable CO2 gas analyzer operation manual, version 1.03, Amesbury, MA 01913 U.S.A.;
  47. Ravn NR, Ambus P, Michelsen A (2017) Impact of decade-long warming, nutrient addition and shading on emission and carbon isotopic composition of CO2 from two subarctic dwarf shrub heaths. Soil Biol Biochem 111:15–24CrossRefGoogle Scholar
  48. Rinnan R, Michelsen A, Jonasson S (2008) Effects of litter addition and warming on soil carbon, nutrient pools and microbial communities in a subarctic heath ecosystem. Appl Soil Ecol 39:271–281CrossRefGoogle Scholar
  49. Schuur EAG, McGuire AD, Schadel C, Grosse G, Harden JW, Hayes DJ, Hugelius G, Koven CD, Kuhry P, Lawrence DM, Natali SM, Olefeldt D, Romanovsky VE, Schaefer K, Turetsky MR, Treat CC, Vonk JE (2015) Climate change and the permafrost carbon feedback. Nature 520:171–179CrossRefGoogle Scholar
  50. Seneviratne SI, Rogelj J, Seferian R, Wartenburger R, Allen MR, Cain M, Millar RJ, Ebi KL, Ellis N, Hoegh-Guldberg O, Payne AJ, Schleussner CF, Tschakert P, Warren RF (2018) The many possible climates from the Paris Agreement's aim of 1.5 degrees C warming. Nature 558:41–49CrossRefGoogle Scholar
  51. Serreze MC, Walsh JE, Chapin FS, Osterkamp T, Dyurgerov M, Romanovsky V, Oechel WC, Morison J, Zhang T, Barry RG (2000) Observational evidence of recent change in the northern high-latitude environment. Clim Chang 46:159–207CrossRefGoogle Scholar
  52. Shaver GR, Chapin FS III (1980) Response to fertilization by various plant growth forms in an Alaskan tundra. Ecology 61:662–675CrossRefGoogle Scholar
  53. Sistla SA, Moore JC, Simpson RT, Gough L, Shaver GR, Schimel JP (2013) Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature 497:615–618CrossRefGoogle Scholar
  54. Sorensen PL, Michelsen A (2011) Long-term warming and litter addition affects nitrogen fixation in a subarctic heath. Glob Chang Biol 17:528–537CrossRefGoogle Scholar
  55. Starr G, Oberbauer SF (2003) Photosynthesis of arctic evergreens under snow: implications for tundra ecosystem carbon balance. Ecology 84:1415–1420CrossRefGoogle Scholar
  56. Street LE, Shaver GR, Willliams M, van Wijk MT (2007) What is the relationship between changes in canopy leaf area and changes in photosynthetic CO2 flux in arctic ecosystems? J Ecol 95:139–150CrossRefGoogle Scholar
  57. Sturm M, Schimel J, Michaelson G, Welker JM, Oberbauer SF, Liston GE, Fahnestock J, Romanovsky VE (2005) Winter biological processes could help convert arctic tundra to shrubland. Bioscience 55:17–26CrossRefGoogle Scholar
  58. Tiiva P, Faubert P, Michelsen A, Holopainen T, Holopainen JK, Rinnan R (2008) Climatic warming increases isoprene emission from a subarctic heath. New Phytol 180:853–863CrossRefGoogle Scholar
  59. Virkkala AM, Virtanen T, Lehtonen A, Rinne J, Luoto M (2018) The current state of CO2 flux chamber studies in the Arctic tundra: a review. Progress in Physical Geography-Earth and Environment 42:162–184CrossRefGoogle Scholar
  60. Voigt C, Lamprecht RE, Marushchak ME, Lind SE, Novakovskiy A, Aurela M, Martikainen PJ, Biasi C (2016) Warming of subarctic tundra increases emissions of all three important greenhouse gases - carbon dioxide, methane and nitrous oxide. Glob Chang Biol 43:4566–4575Google Scholar
  61. Webb EE, Schuur EAG, Natali SM, Oken KL, Bracho R, Krapek JP, Risk D, Nickerson NR (2016) Increased wintertime CO2 loss as a result of sustained tundra warming. J Geophys Res Biogeosci 121:249–265CrossRefGoogle Scholar
  62. Welker JM, Brown KB, Fahnestock JT (1999) CO2 flux in Arctic and alpine dry tundra: comparative field responses under ambient and experimentally warmed conditions. Arct Antarct Alp Res 31:272–277Google Scholar
  63. Welker JM, Fahnestock JT, Henry GHR, O'dea KW, Chimner RA (2004) CO2 exchange in three Canadian high Arctic ecosystems: response to long-term experimental warming. Glob Chang Biol 10:1981–1995CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of BiologyUniversity of CopenhagenCopenhagen ØDenmark
  2. 2.Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations