Advertisement

Plant and Soil

, Volume 444, Issue 1–2, pp 225–238 | Cite as

Maize root distributions strongly associated with water tables in Iowa, USA

  • Virginia A. NicholsEmail author
  • Raziel A. OrdóñezEmail author
  • Emily E. Wright
  • Michael J. Castellano
  • Matt Liebman
  • Jerry L. Hatfield
  • Matt Helmers
  • Sotirios V. Archontoulis
Regular Article

Abstract

Aims

Root distributions determine crop nutrient access and soil carbon input patterns. To date, root distribution data are rare but needed to improve knowledge and prediction of cropping system sustainability. In this study, we sought to (i) quantify variation in maize (Zea mays) and soybean (Glycine max) roots by depth and environment across Iowa, USA and (ii) identify environmental factors explaining the most variation.

Methodology

Over three years we collected soil cores from 0 to 210 cm in 16 maize and 12 soybean field experiments at grain filling. Root mass, length, carbon (C) and nitrogen (N) were determined at 30 cm increments, coupled with crop, soil, management, and weather-related measurements.

Results

Percentage of root mass located in the top 30 cm varied from 52 to 94% in maize and 54–84% in soybean. Variation in maize root distributions was strongly associated with depth to water tables, variation in soybean with soil physical attributes. Root C:N ratios were highly variable with no depth-pattern, averaging 20 and 30 for soybean and maize, respectively. In both crops, specific root lengths increased with depth to 60 cm, and thereafter remained constant.

Conclusions

Field studies of roots should consider depth to water tables and soil moisture measurements, as they influence vertical root distributions.

Keywords

Root mass Root length Root distribution Specific root length Root nitrogen C:N ratio Water table 

Abbreviations

C

Carbon

N

nitrogen

SRL

specific root length

US

United States

Notes

Acknowledgements

The authors gratefully acknowledge Katherine Goode, Ranae Dietzel, and Rafael Martinez-Feria for statistical advice, and Isaiah Huber for map making. Patrick Edmonds provided invaluable help with the planning and execution of field studies and processing of samples, and all station managers were generous in their time and resources to facilitate data collection from their sites. We also thank numerous undergraduates for assistance in sample collection and processing. We sincerely thank Ranae Dietzel and Max Kuhn for providing support in professional development activities that directly led to this work. This work was funded by the Foundation for Food and Agricultural Research (FFAR; Project title: Improving simulation of soil water dynamics and crop yields in the US Corn Belt), the Iowa Soybean Association, the Plant Sciences Institute of Iowa State University, and USDA-NIFA Hatch project IOW03814.

Supplementary material

11104_2019_4269_MOESM1_ESM.pdf (523 kb)
ESM 1 (PDF 523 kb)
11104_2019_4269_MOESM2_ESM.xlsx (23 kb)
ESM 2 (XLSX 23 kb)

References

  1. Allmaras RR, Nelson WW, Voorhees WB (1975) Soybean and corn rooting in southwestern Minnesota: I. water-uptake sink. Soil Sci Soc Am Proc 39:764–770.  https://doi.org/10.2136/sssaj1975.03615995003900040045x CrossRefGoogle Scholar
  2. Amos B, Walters DT (2006) Maize root biomass and net Rhizodeposited carbon. Soil Sci Soc Am J 70:1489.  https://doi.org/10.2136/sssaj2005.0216 CrossRefGoogle Scholar
  3. Anderson EL (1988) Tillage and N fertilization effects on maize root growth and root:shoot ratio. Plant Soil 108:245–251.  https://doi.org/10.1007/BF02375655 CrossRefGoogle Scholar
  4. Archontoulis SV, Miguez FE (2015) Nonlinear regression models and applications in agricultural research. Agron J 107:786–798.  https://doi.org/10.2134/agronj2012.0506 CrossRefGoogle Scholar
  5. Archontoulis SV, Miguez FE, Moore KJ (2014a) Evaluating APSIM maize, soil water, soil nitrogen, manure, and soil temperature modules in the Midwestern United States. Agron J 106:1025–1040.  https://doi.org/10.2134/agronj2013.0421 CrossRefGoogle Scholar
  6. Archontoulis SV, Miguez FE, Moore KJ (2014b) A methodology and an optimization tool to calibrate phenology of short-day species included in the APSIM PLANT model: application to soybean. Environ Model Softw 62:465–477.  https://doi.org/10.1016/j.envsoft.2014.04.009 CrossRefGoogle Scholar
  7. Ball-Coelho BR, Roy RC, Swanton CJ (1998) Tillage alters corn root distribution in coarse-textured soil. Soil Tillage Res 45:237–249.  https://doi.org/10.1016/S0167-1987(97)00086-X CrossRefGoogle Scholar
  8. Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48.  https://doi.org/10.18637/jss.v067.i01 CrossRefGoogle Scholar
  9. Baty F, Ritz C, Brutsche M et al (2015) A Toolbox for Nonlinear Regression in R : The Package nlstools. J Stat Softw 66.  https://doi.org/10.18637/jss.v066.i05
  10. Bonifas KD, Lindquist JL (2009) Effects of nitrogen supply on the root morphology of corn and velvetleaf. J Plant Nutr 32:1371–1382.  https://doi.org/10.1080/01904160903007893 CrossRefGoogle Scholar
  11. Bozdogan H (1987) Model selection and Akaike’s information criterion (AIC): the general theory and its analytical extensions. Psychometrika 52:345–370.  https://doi.org/10.1007/BF02294361 CrossRefGoogle Scholar
  12. Brye KR, Gower ST, Norman JM, Bundy LG (2002) Carbon budgets for a prairie and agroecosystems: effects of land use and interannual variability. Ecol Appl 12:962–979.  https://doi.org/10.1890/1051-0761(2002)012[0962:CBFAPA]2.0.CO;2 CrossRefGoogle Scholar
  13. Cardwell VB (2010) Fifty years of Minnesota corn production: sources of yield Increase1. Agron J 74:984.  https://doi.org/10.2134/agronj1982.00021962007400060013x CrossRefGoogle Scholar
  14. Chen X, Zhang J, Chen Y et al (2014) Changes in root size and distribution in relation to nitrogen accumulation during maize breeding in China. Plant Soil 374:121–130.  https://doi.org/10.1007/s11104-013-1872-0 CrossRefGoogle Scholar
  15. Dietzel R, Liebman M, Archontoulis S (2017) A deeper look at the relationship between root carbon pools and the vertical distribution of the soil carbon pool. SOIL 3:139–152.  https://doi.org/10.5194/soil-3-139-2017 CrossRefGoogle Scholar
  16. Dunbabin V, Diggle A, Rengel Z (2003) Is there an optimal root architecture for nitrate capture in leaching environments? Plant Cell Environ 26:835–844.  https://doi.org/10.1046/j.1365-3040.2003.01015.x CrossRefPubMedGoogle Scholar
  17. Duvick DN (2005) Genetic progress in yield of United States maize (Zea mays L.). Maydica 50:193–202Google Scholar
  18. Dwyer LM, Ma BL, Stewart DW et al (1996) Root mass distribution under conventional and conservation tillage. Can J Soil Sci 76:23–28.  https://doi.org/10.4141/cjss96-004 CrossRefGoogle Scholar
  19. Ebrahimi-Mollabashi E, Huth N, Holzworth D et al (2019) Enhancing APSIM to simulate excessive moisture effects on root growth. Field Crops Res 236:58–67.  https://doi.org/10.1016/j.fcr.2019.03.014 CrossRefGoogle Scholar
  20. Fan Y, Li H, Miguez-Macho G (2013) Global patterns of groundwater. Science 339(80):940–944.  https://doi.org/10.1126/science.1229881 CrossRefPubMedGoogle Scholar
  21. Fan J, McConkey B, Wang H, Janzen H (2016) Root distribution by depth for temperate agricultural crops. Field Crops Res 189:68–74.  https://doi.org/10.1016/j.fcr.2016.02.013 CrossRefGoogle Scholar
  22. Fan Y, Miguez-Macho G, Jobbágy EG et al (2017) Hydrologic regulation of plant rooting depth. Proc Natl Acad Sci 114:10572–10577.  https://doi.org/10.1073/pnas.1712381114 CrossRefPubMedGoogle Scholar
  23. Farrar J, Hawes M, Jones D et al (2012) How roots control the flux of carbon to the rhizosphere. Ecology 84:827–837.  https://doi.org/10.1890/0012-9658(2003)084[0827:HRCTFO]2.0.CO;2 CrossRefGoogle Scholar
  24. Fiorini A, Boselli R, Amaducci S, Tabaglio V (2018) Effects of no-till on root architecture and root-soil interactions in a three-year crop rotation. Eur J Agron 99:156–166.  https://doi.org/10.1016/j.eja.2018.07.009 CrossRefGoogle Scholar
  25. Follett RF, Allmaras RR, Reichman GA (1974) Distribution of corn roots in Sandy soil with a declining water table 1. Agron J 66:288.  https://doi.org/10.2134/agronj1974.00021962006600020030x CrossRefGoogle Scholar
  26. Forecast and Assessment of Cropping Systems (FACTS) (2018) Available online at https://crops.extension.iastate.edu/facts/. Accessed 2018
  27. Friedman J, Hastie T, Tibshirani R (2010) Regularization Paths for Generalized Linear Models via Coordinate Descent. J Stat Softw 33.  https://doi.org/10.18637/jss.v033.i01
  28. Garnier S (2018) Viridis: default color maps from “matplotlib”. R package version 0.5.1Google Scholar
  29. Gregory PJ (2006) Roots, rhizosphere and soil: the route to a better understanding of soil science? Eur J Soil Sci 57:2–12.  https://doi.org/10.1111/j.1365-2389.2005.00778.x CrossRefGoogle Scholar
  30. Grolemund G, Wickham H (2011) Dates and Times Made Easy with lubridate. J Stat Softw 40.  https://doi.org/10.18637/jss.v040.i03
  31. Gyssels G, Poesen J, Bochet E, Li Y (2005) Impact of plant roots on the resistance of soils to erosion by water: a review. Prog Phys Geogr 29:189–217.  https://doi.org/10.1191/0309133305pp443ra CrossRefGoogle Scholar
  32. Hammer GL, Zinselmeier C, Schussler J et al (2009) Can changes in canopy and/or root system architecture explain historical maize yield trends in the U.S. Corn Belt? Crop Sci 49:299–312CrossRefGoogle Scholar
  33. Hartmann A, Šimůnek J, Aidoo MK et al (2017) Implementation and application of a root growth module in HYDRUS. Vadose Zone J 17.  https://doi.org/10.2136/vzj2017.02.0040 CrossRefGoogle Scholar
  34. Hatfield JL, Cruse RM, Tomer MD (2013) Convergence of agricultural intensification and climate change in the Midwestern United States: implications for soil and water conservation. Mar Freshw Res 64:423–435.  https://doi.org/10.1071/MF12164 CrossRefGoogle Scholar
  35. Himmelbauer ML (2004) Estimating length, average diameter and surface area of roots using two different image analyses systems. Plant Soil 260:111–120.CrossRefGoogle Scholar
  36. Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12:55–67.  https://doi.org/10.1080/00401706.1970.10488634 CrossRefGoogle Scholar
  37. Huth N, Bristow K, Verburg K (2012) SWIM3: model use, calibration, and validation. Trans ASABE 55:1303–1313.  https://doi.org/10.13031/2013.42243 CrossRefGoogle Scholar
  38. Iowa State University (2018) ISU Research and Demonstration Farms. Available online at https://www.farms.ag.iastate.edu/). Accessed 2018
  39. Jarchow ME, Liebman M, Dhungel S et al (2015) Trade-offs among agronomic, energetic, and environmental performance characteristics of corn and prairie bioenergy cropping systems. GCB Bioenergy 7:57–71.  https://doi.org/10.1111/gcbb.12096 CrossRefGoogle Scholar
  40. Kaspar TC, Brown HJ, Kassmeyer EM (1991) Corn root distribution as affected by tillage, wheel traffic, and fertilizer placement. Soil Sci Soc Am J 55:1390.  https://doi.org/10.2136/sssaj1991.03615995005500050031x CrossRefGoogle Scholar
  41. Kätterer T, Bolinder MA, Andrén O et al (2011) Roots contribute more to refractory soil organic matter than above-ground crop residues, as revealed by a long-term field experiment. Agric Ecosyst Environ 141:184–192.  https://doi.org/10.1016/J.AGEE.2011.02.029 CrossRefGoogle Scholar
  42. Keating B, Carberry P, Hammer G et al (2003) An overview of APSIM, a model designed for farming systems simulation. Eur J Agron 18:267–288.  https://doi.org/10.1016/S1161-0301(02)00108-9 CrossRefGoogle Scholar
  43. Keep NR, Schapaugh WT, Prasad PVV, Boyer JE (2016) Changes in physiological traits in soybean with breeding advancements. Crop Sci 56:122.  https://doi.org/10.2135/cropsci2013.07.0499 CrossRefGoogle Scholar
  44. Kell DB (2011) Breeding crop plants with deep roots: their role in sustainable carbon, nutrient and water sequestration. Ann Bot 108:407–418CrossRefGoogle Scholar
  45. Kell DB (2012) Large-scale sequestration of atmospheric carbon via plant roots in natural and agricultural ecosystems: why and how. Philos T R Soc B 367:1589–1597.  https://doi.org/10.1098/rstb.2011.0244 CrossRefGoogle Scholar
  46. Kimball BA, Boote KJ, Hatfield JL et al (2019) Simulation of maize evapotranspiration: an inter-comparison among 29 maize models. Agric For Meteorol 271:264–284.  https://doi.org/10.1016/J.AGRFORMET.2019.02.037 CrossRefGoogle Scholar
  47. Kuchenbuch RO, Barber SA (1988) Significance of temperature and precipitation for maize root distribution in the field. Plant Soil 106:9–14.  https://doi.org/10.1007/BF02371189 CrossRefGoogle Scholar
  48. Kuhn M (2018) Caret: classification and regression trainingGoogle Scholar
  49. Kuznetsova A, Brockhoff PB, Christensen RHB (2017) lmerTest Package: Tests in Linear Mixed Effects Models. J Stat Softw 82.  https://doi.org/10.18637/jss.v082.i13
  50. Logsdon SD, Karlen DL (2004) Bulk density as a soil quality indicator during conversion to no-tillage. Soil Tillage Res 78:143–149.  https://doi.org/10.1016/J.STILL.2004.02.003 CrossRefGoogle Scholar
  51. Lynch JP (2013) Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann Bot 112:347–357.  https://doi.org/10.1093/aob/mcs293 CrossRefPubMedPubMedCentralGoogle Scholar
  52. McGranahan DA, Daigh AL, Veenstra JJ et al (2014) Connecting soil organic carbon and root biomass with land-use and vegetation in temperate grassland. Sci World J 2014:1–9.  https://doi.org/10.1155/2014/487563 CrossRefGoogle Scholar
  53. Mevik B-H, Wehrens R, Hovde Liland K (2018) Pls: partial least squares and principal component regressionGoogle Scholar
  54. Miller BA, Schaetzl RJ (2012) Precision of soil particle size analysis using laser Diffractometry. Soil Sci Soc Am J 76:1719.  https://doi.org/10.2136/sssaj2011.0303 CrossRefGoogle Scholar
  55. Omernik JM (1987) Ecoregions of the conterminous United States. Ann Assoc Am Geogr 77:118–125.  https://doi.org/10.1111/j.1467-8306.1987.tb00149.x CrossRefGoogle Scholar
  56. Ordóñez RA, Castellano MJ, Hatfield JL et al (2018a) A solution for sampling position errors in maize and soybean root mass and length estimates. Eur J Agron 96:156–162.  https://doi.org/10.1016/j.eja.2018.04.002 CrossRefGoogle Scholar
  57. Ordóñez RA, Castellano MJ, Hatfield JL et al (2018b) Maize and soybean root front velocity and maximum depth in Iowa, USA. Field Crops Res 215:122–131.  https://doi.org/10.1016/j.fcr.2017.09.003 CrossRefGoogle Scholar
  58. Poffenbarger HJ, Barker DW, Helmers MJ et al (2017) Maximum soil organic carbon storage in Midwest U.S. cropping systems when crops are optimally nitrogen-fertilized. PLoS One 12:e0172293.  https://doi.org/10.1371/journal.pone.0172293 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Qin R, Stamp P, Richner W (2005) Impact of tillage and banded starter fertilizer on maize root growth in the top 25 centimeters of the soil. Agron J 97:674–683.  https://doi.org/10.2134/agronj2004.0059 CrossRefGoogle Scholar
  60. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  61. Rasse DP, Rumpel C, Dignac M-F (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269:341–356.  https://doi.org/10.1007/s11104-004-0907-y CrossRefGoogle Scholar
  62. Reyes A, Messina CD, Hammer GL et al (2015) Soil water capture trends over 50 years of single-cross maize (Zea mays L.) breeding in the US corn-belt. J Exp Bot 66:7339–7346.  https://doi.org/10.1093/jxb/erv430 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Rich SM, Watt M (2013) Soil conditions and cereal root system architecture: review and considerations for linking Darwin and weaver. J Exp Bot 64:1193–1208.  https://doi.org/10.1093/jxb/ert043 CrossRefPubMedGoogle Scholar
  64. Russell AE, Cambardella CA, Laird DA et al (2009) Nitrogen fertilizer effects on soil carbon balances in Midwestern U.S. agricultural systems. Ecol Appl 19:1102–1113.  https://doi.org/10.1890/07-1919.1 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Sawyer J, Nafziger E, Randall G, et al (2006) Concepts and rationale for regional nitrogen rate guidelines for corn. Iowa State Univ ExtGoogle Scholar
  66. Saxton KE, Rawls WJ (2006) Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci Soc Am J 70:1569.  https://doi.org/10.2136/sssaj2005.0117 CrossRefGoogle Scholar
  67. Schenk HJ, Jackson RB (2002) The global biogeography of roots. Ecol Monogr 72:311–328.  https://doi.org/10.1890/0012-9615(2002)072[0311:TGBOR]2.0.CO;2 CrossRefGoogle Scholar
  68. Soil Survey Staff, Natural Resources Conservation Service, Uniteds States Department of Agriculture. (2018) Soil Survey Geographic (SSURGO) Database. Available online at https://sdmdataaccess.sc.egov.usda.gov. Accessed 2018
  69. Sokol NW, Bradford MA (2019) Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nat Geosci 12:46–53.  https://doi.org/10.1038/s41561-018-0258-6 CrossRefGoogle Scholar
  70. Stanley CD, Kaspar TC, Taylor HM (1980) Soybean top and root response to temporary water tables imposed at three different stages of growth. Agron J 72:341–346.  https://doi.org/10.2134/agronj1980.00021962007200020021x CrossRefGoogle Scholar
  71. Stueffer JF, De Kroon H, During HJ (2006) Exploitation of environmental Hetergeneity by spatial division of labor in a clonal plant. Funct Ecol 10:328.  https://doi.org/10.2307/2390280 CrossRefGoogle Scholar
  72. Tibshirani R (2011) Regression shrinkage and selection via the lasso: a retrospective. J R Stat Soc Ser B (Statistical Methodol) 73:273–282.  https://doi.org/10.1111/j.1467-9868.2011.00771.x CrossRefGoogle Scholar
  73. Tron S, Bodner G, Laio F et al (2015) Can diversity in root architecture explain plant water use efficiency? A modeling study. Ecol Model 312:200–210.  https://doi.org/10.1016/j.ecolmodel.2015.05.028 CrossRefGoogle Scholar
  74. Togliatti K, Archontoulis SV, Dietzel R, Puntel L, VanLoocke A (2017) How does inclusion of weather forecasting impact in-season crop model predictions? Field Crops Res 214:261–272.CrossRefGoogle Scholar
  75. United States Department of Agriculture (USDA) (2017) Quick Stats 2.0. U.S. Department of Agriculture, National Agricultural Statistics Service, Washington DC. https:://quickstats.nass.usda.gov/ Accessed Dec 2018
  76. Wang F, Fraisse CW, Kitchen NR, Sudduth KA (2003) Site-specific evaluation of the CROPGRO-soybean model on Missouri claypan soils. Agric Syst 76:985–1005.  https://doi.org/10.1016/S0308-521X(02)00029-X CrossRefGoogle Scholar
  77. Wei T, Simko V (2017) R package “corrplot”: visualization of a correlation matrix (Version 0.84)Google Scholar
  78. Wickham H (2017) Easily install and load the “Tidyverse” • tidyverseGoogle Scholar
  79. Wickham H, Bryan J (2018) readxl: Read Excel FilesGoogle Scholar
  80. York LM (2018) Phenotyping crop root crowns: general guidance and specific protocols for maize, wheat, and soybean. In: Methods in molecular biology. Humana Press, New York, NY, pp 23–32Google Scholar
  81. York LM, Galindo-Castaneda T, Schussler JR, Lynch JP (2015) Evolution of US maize (Zea mays L.) root architectural and anatomical phenes over the past 100 years corresponds to increased tolerance of nitrogen stress. J Exp Bot 66:2347–2358.  https://doi.org/10.1093/jxb/erv074 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of AgronomyIowa State UniversityAmesUSA
  2. 2.National Laboratory for Agriculture and the EnvironmentUSDA-ARSAmesUSA
  3. 3.Department of Agricultural and Biosystems EngineeringIowa State UniversityAmesUSA

Personalised recommendations