Advertisement

Genetic diversity and growth promoting characteristics of diazotrophic bacteria isolated from 20 genotypes of Brachiaria spp.

  • Nathália Virgínia da Silva Ribeiro
  • Márcia Soares Vidal
  • Sanzio Carvalho Lima Barrios
  • Vera Lúcia Divan Baldani
  • José Ivo BaldaniEmail author
Regular Article
  • 95 Downloads

Abstract

Background and aims

Diazotrophic bacteria, including those of the genus Azospirillum and Nitrospirillum, colonize Brachiaria genotypes and contribute to plant development through nitrogen fixation, production of phytohormones and bioavailability of nutrients. This study aimed to determine the phylogenetic positioning and evaluate the functional abilities of diazotrophic bacteria isolated from Brachiaria genotypes.

Methods

Diazotrophic bacterial counting and isolation were carried out with rhizosphere soil and root samples from 20 Brachiaria genotypes after inoculation in nitrogen-free semi-solid NFb and LGI media. The isolates were analyzed using 16S rRNA and nifH sequences, and tested for their functional abilities to produce auxin and siderophores, to solubilize phosphate and zinc, and to degrade cellulose.

Results

The diazotrophic population ranged from 102 to 108 g−1 rhizosphere soil or roots. Sequencing of 16S rRNA from 213 isolates confirmed the presence of genera Azospirillum and Nitrospirillum, and revealed the presence of 14 other diazotrophic genera. The genus Nitrospirillum was detected colonizing all niches of most Brachiaria species. A PCA analysis showed a positive correlation between the ability to produce siderophores with the ability to produce IAA; and between phosphate and zinc solubilisation.

Conclusions

The results showed a high diversity of diazotrophic bacterial species colonizing 20 Brachiaria genotypes and revealed the presence of bacteria with variable growth-promoting characteristics, highlighting their potential as good candidates for the development of biofertilizers.

Keywords

Isolation Functional capacity Sequencing Phylogenetic positioning 

Notes

Acknowledgments

This study was funded by the project Embrapa MP2 (n° 02.13.08.004.00.02.003). The first author was supported by a fellowship from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. José Ivo Baldani was supported by fellowship from CNPq (process n° 306011/2017-4) and a bench fee from FAPERJ–CNE (E26/203.011/2016). The authors thank Dr. Ederson da Conceição Jesus for the multivariate statistical analysis and PCA analysis.

Supplementary material

11104_2019_4263_Fig6_ESM.png (2 mb)
Figure S1

Venn diagram representation of the diazotrophic strains isolated from the different plant compartments (non and desinfected roots and rhizosphere soil) with respect to bacterial genera from the Brachiaria species: (A) B. brizantha, (B) B. humidicola, (C) B. decumbens and (D) Brachiaria spp. plus B. arrecta. Signals: no *: belongs to Brachiaria spp., *: belongs to B. arrecta and **: belongs to both Brachiaria spp. and B. arrecta. (PNG 2066 kb)

11104_2019_4263_MOESM1_ESM.tif (16.6 mb)
High Resolution (TIF 17044 kb)
11104_2019_4263_MOESM2_ESM.jpg (79 kb)
Figure S2 Examples of in vitro halo formation characteristic of solubilization of inorganic phosphate (A) and zinc oxide (B) by strains NRB081 and NRB082 grown in NBRIP medium containing insoluble β-tricalcium phosphate (Ca3(PO4)2) or zinc oxide (ZnO). (JPG 79 kb)
11104_2019_4263_MOESM3_ESM.jpg (47 kb)
Figure S3 . Production of siderophore in vitro of catecholate type by strains isolated from Brachiaria genotypes and evaluated in solid NFBb medium with 0.1% (NH4)2SO4 of CAS. The blue/yellow color change was observed 72 h after incubation at 30 °C. (A) strains with no production capacity; (B) strain with low production capacity; (C) strain with medium capacity; and (D) strain with high capacity of siderophore production. (JPG 47 kb)
11104_2019_4263_MOESM4_ESM.jpg (40 kb)
Figure S4 Production of siderophore in vitro of hydroxamate type by strains isolated from Brachiaria genotypes and analysed in solid LGI medium, with 0.1% (NH4)2SO4 of CAS. The change of color blue/pink was observed 72 h after incubation at 30 °C. (A) strain with no production capacity; (B) strain with low production capacity; (C) strain with medium capacity; and (D) strain with high capacity of siderophore production. (JPG 40 kb)
11104_2019_4263_MOESM5_ESM.jpg (68 kb)
Figure S5 Examples of in vitro cellulolytic activity of strains isolated from Brachiaria genotypes. Bacteria were inoculated onto CMC plate medium containing 0.2% of carboxymethylcellulose. (A) strain showing no activity; (B) strain with low activity; (C) strain with medium capacity; and (D) strain with high cellulose degradation capacity. (JPG 68 kb)
11104_2019_4263_Fig7_ESM.png (209 kb)
Figure S6

Detailed cluster of strains closely related to Azospirillum lipoferum from the phylogenetic tree presented in Fig. 2. (PNG 208 kb)

11104_2019_4263_MOESM6_ESM.tif (1.2 mb)
High Resolution (TIF 1238 kb)
11104_2019_4263_Fig8_ESM.png (154 kb)
Figure S7

Detailed cluster of strains closely related to Azospirillum brasilense from the phylogenetic tree presented in Fig. 2. (PNG 154 kb)

11104_2019_4263_MOESM7_ESM.tif (1.7 mb)
High Resolution (TIF 1692 kb)
11104_2019_4263_Fig9_ESM.png (151 kb)
Figure S8

Detailed cluster of strains closely related to Azospirillum formosense from the phylogenetic tree presented in Fig. 2. (PNG 150 kb)

11104_2019_4263_MOESM8_ESM.tif (1.5 mb)
High Resolution (TIF 1512 kb)
11104_2019_4263_Fig10_ESM.png (178 kb)
Figure S9

Detailed cluster of strains closely related to Azospirillum melinis from the phylogenetic tree presented in Fig. 2. (PNG 178 kb)

11104_2019_4263_MOESM9_ESM.tif (1.4 mb)
High Resolution (TIF 1417 kb)
11104_2019_4263_Fig11_ESM.png (368 kb)
Figure S10

Detailed cluster of strains closely related to Nitrospirillum amazonense from the phylogenetic tree presented in Fig. 2. (PNG 367 kb)

11104_2019_4263_MOESM10_ESM.tif (3.4 mb)
High Resolution (TIF 3439 kb)
11104_2019_4263_MOESM12_ESM.pdf (87 kb)
Table S1 (PDF 86 kb)

References

  1. ABIEC 2018- Associação Brasileira da Indústria Exportadora de Carnes. Exportações de carne bovina do Brasil. Available in: http://abiec.siteoficial.ws/images/upload/sumario-pt-010217.pdf. Accesses 27 July 2018
  2. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402.  https://doi.org/10.1093/nar/25.17.3389 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Azevedo MS, Teixeira KRDS, Kirchhof G, Hartmann A, Baldani JI (2005) Influence of soil and host plant crop on the genetic diversity of Azospirillum amazonense isolates. Pedobiologia 49(6):565–576.  https://doi.org/10.1016/j.pedobi.2005.06.008 CrossRefGoogle Scholar
  4. Baldani JI, Baldani VLD (2005) History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the brazilian experience. An Acad Bras Cienc 77(3):549–579.  https://doi.org/10.1590/S0001-37652005000300014 CrossRefPubMedGoogle Scholar
  5. Baldani JI, Reis VM, Videira SS, Boddey LH, Baldani VLD (2014) The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media: a practical guide for microbiologists. Plant Soil 384(1–2):413–431.  https://doi.org/10.1007/s11104014-2186-6
  6. Barea JM, Pozo MJ, Azcón R, Azcón-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56(417):1761–1778.  https://doi.org/10.1093/jxb/eri197 CrossRefPubMedGoogle Scholar
  7. Baudoin E, Benizri E, Guckert A (2003) Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil biology and biochemistry 35:1183-1192. Available online at www.sciencedirect.com
  8. Boddey RM, Victoria RL (1986) Estimation of biological nitrogen fixation associated with Brachiaria and Paspalum grasses using 15N – labelled organic matter and fertilizer. Plant and Soil 90:265–292Google Scholar
  9. Boddey RM, Macedo R, Tarré RM, Ferreira E, De Oliveira OC, Rezende CDP, Cantarutti RB, Pereira JM, Alves BJR, Urquiaga S (2004) Nitrogen cycling in Brachiaria pastures: the key to understanding the process of pasture decline. Agric Ecosyst Environ 103(2):389–403.  https://doi.org/10.1016/j.agee.2003.12.010
  10. Brasil MDS, Baldani JI, Baldani VLD (2005) Ocorrencia e diversidade de bactérias diazotróficas associadas a gramíneas forrageiras do pantanal sul matogrossense. R Bras Ci Solo 29(2):179–190.  https://doi.org/10.1590/s0100-06832005000200003
  11. Carrillo-Castañeda G, Juárez Muñoz J, Ramón Peralta-Videa J, Gomez E, Gardea-Torresdey JL (2002) Plant growth-promoting bacteria promote copper and iron translocation from root to shoot in alfalfa seedlings. J Plant Nutr 26(9):1801–1814.  https://doi.org/10.1081/PLN-120023284 CrossRefGoogle Scholar
  12. Chaiharn M, Chunhaleuchanon S, Lumyong S (2009) Screening siderophore producing bacteria as potencial biological control agente for fungal rice pathogens in Thailand. World Jornal Microbiol Biotecnol 25(11):1919–1928.  https://doi.org/10.1007/s11274-009-0090-7 CrossRefGoogle Scholar
  13. Chalita PB, Farias E, Zilli J, Silva KD (2013) Avaliação da diversidade genotípica de bactérias diazotróficas isoladas de plantas de Brachiaria brizantha e Brachiaria humidicola no estado de Roraima. In: Embrapa Roraima-Artigo em anais de congresso (ALICE). In: CONGRESSO BRASILEIRO DE CIÊNCIA DO SOLO, 34., 2013, Florianópolis. Ciência do solo: para quê e para quem: anais. Viçosa, MG: Sociedade Brasileira de Ciência do SoloGoogle Scholar
  14. Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42(5):669–678.  https://doi.org/10.1016/j.soilbio.2009.11.024 CrossRefGoogle Scholar
  15. Dantur KI, Enrique R, Welin B, Castagnaro AP (2015) Isolation of cellulolytic bacteria from the intestine of Diatraea saccharalis larvae and evaluation of their capacity to degrade sugarcane biomass. AMB Express 5(1):1–15.  https://doi.org/10.1186/s13568-015-0101-z CrossRefGoogle Scholar
  16. Dias-Filho MB (2011) Degradação de pastagens: processos, causas e estratégias de recuperação. Documentos 411, 25 p. Embrapa Amazônia oriental, ISSN 1983-0513Google Scholar
  17. Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22(2):107–149.  https://doi.org/10.1080/713610853 CrossRefGoogle Scholar
  18. Duarte MDLR, Albuquerque FC, Sanhueza RMV, Verzignassi JR, Kondo N (2007) Etiology of collar rot of Brachiaria brizantha cv. Marandu in Amazonian pastures. Fitopatol Bras 32(3):261–265.  https://doi.org/10.1590/S0100-41582007000300013 CrossRefGoogle Scholar
  19. Eckert B, Weber OB, Kirchhof G, Halbritter A, Stoffels M, Hartmann A (2001) Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass Miscanthus. Int J Syst Evol Microbiol 51(1):17–26.  https://doi.org/10.1099/00207713-51-1-17 CrossRefPubMedGoogle Scholar
  20. Elbeltagy A, Nishioka K, Suzuki H, Sato T, Sato Y, Morisaki H, Mitsui H, Minamisawa K (2000) Isolation and characterization of endophytic bacteria from wild and traditionally cultivated rice varieties. Soil Sci Plant Nutr 46(3):617–629.  https://doi.org/10.1080/00380768.2000.10409127
  21. Estrada GA, Baldani VLD, de Oliveira DM, Urquiaga S, Baldani JI (2013) Selection of phosphate-solubilizing diazotrophic Herbaspirillum and Burkholderia strains and their effect on rice crop yield and nutrient uptake. Plant Soil 369(1–2):115–129.  https://doi.org/10.1007/s11104-012-1550-7
  22. Fasim F, Ahmed N, Parsons R, Gadd GM (2002) Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiol Lett 213:1–6.  https://doi.org/10.1111/j.15746968.2002.tb11277.x
  23. Furushita M, Shiba T, Maeda T, Yahata M, Kaneoka A, Takahashi Y, Torii K, Hasegawa T, Ohta M (2003) Similarity of tetracycline resistance genes applied isolated from fish farm bacteria to those from clinical isolates. Appl Environ Microbiol 69(9):5336–5342.  https://doi.org/10.1128/AEM.69.9.5336-5342.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gaby JC, Buckley DH (2014) A comprehensive aligned nifH gene database: a multipurpose tool for studies of nitrogen-fxing bacteria. Database (Oxford) 2014:bau001.  https://doi.org/10.1093/database/bau001
  25. Glick BR (2012) Plant growth-promoting Bacteria: mechanisms and applications. Scientifica 2012:1–15.  https://doi.org/10.6064/2012/963401 CrossRefGoogle Scholar
  26. Goteti PK, Emmanuel LDA, Desai S (2013) Shaik MHA. Prospective zinc solubilising bacteria for enhanced nutrient uptake and growth promotion in maize (Zea mays L) Int J Microbiol 2013:1–8.  https://doi.org/10.1155/2013/869697
  27. Guarda VDA, Guarda RDA (2014) Brazilian tropical grassland ecosystems: distribution and research advances. Am J Plant Sci 5:924–932CrossRefGoogle Scholar
  28. Gupta D, Pandya H, Mistry S, Patel A, Shelat H, Vyas R (2016) Isolation of Azospirillum and compatibility testing with micronutrients, pgpr activity and efficacy on tomato. The Bioscan 11(2):891-896. Available online at: https://www.researchgate.net/publication/309406618
  29. Gutiérrez-Zamora ML, Martınez-Romero E (2001) Natural endophytic association between Rhizobium etli and maize (Zea mays L.). J Biotechnol 91(2–3):117–126.  https://doi.org/10.1016/s0168-1656(01)00332-7 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp 41:95–98Google Scholar
  31. Hankin L, Anagnostakis SL (1975) The use of solid media for detection of enzymes production by fungi. Mycologia 67(3):597–607.  https://doi.org/10.2307/3758395 CrossRefGoogle Scholar
  32. Hungria M, Campo RJ, Souza EM, Pedrosa FO (2010) Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant and Soil, 331(1-2):413-425.  https://doi.org/10.1007/s11104-009-0262-0
  33. Hungria M, Nogueira MA, Araujo RS (2016) Inoculation of Brachiaria spp. with the plant growth-promoting bacterium Azospirillum brasilense: an environment-friendly component in the reclamation of degraded pastures in the tropics. Agric Ecosyst Environ 221:125–131.  https://doi.org/10.1016/j.agee.2016.01.024 CrossRefGoogle Scholar
  34. Hurek T, Reinhold-Hurek B, Van Montagu M, Kellenberger E (1994) Root colonization and systemic spreading of Azoarcus sp. strain BH72 in grasses. J Bacteriol 176(7):1913–1923.  https://doi.org/10.1128/jb.176.7.1913-1923.1994 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Ilyas N, Bano A, Iqbal S (2008) Variation in Rhizobium and Azospirillum strains isolated from maize growing in arid and semiarid areas. Int J Agric Biol 10(6):612–618Google Scholar
  36. Kamran S, Shahid I, Baig DN, Rizwan M, Malik KA, Mehnaz S (2017) Contribution of zinc solubilizing bacteria in growth promotion and zinc content of wheat. Front Microbiol 8:2593.  https://doi.org/10.3389/fmicb.2017.02593 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kasana RC, Salwan R, Dhar H, Dutt S, Gulati A (2008) Rapid and easy method for the detection of microbial cellulases on agar plates using gram’s iodine. Curr Microbiol 57(5):503–507.  https://doi.org/10.1007/s00284-008-9276-8 CrossRefPubMedGoogle Scholar
  38. Kazan K, Manners JM (2009) Linking development to defense: auxin in plant pathogen interactions. Trends Plant Sci 14(7):373–382.  https://doi.org/10.1016/j.tplants.2009.04.005 CrossRefPubMedGoogle Scholar
  39. Kumar V, Narula N (1999) Solubilization of inorganic phosphates and growth emergence of wheat as affected by Azotobacter chroococcum mutants. Biol Fertil Soils 28(3):301–305.  https://doi.org/10.1007/s003740050497
  40. Lewenza S, Conway B, Greenberg EP, Sokol PA (1999) Quorum sensing in Burkholderia cepacia: identification of the LuxRI homologs CepRI. J Bacteriol 81(3):748–756Google Scholar
  41. Lin SY, Shen FT, Young LS, Zhu ZL, Chen WM, Young CC (2012) Azospirillum formosense sp. nov., a diazotroph from agricultural soil. Int J Syst Evol Microbiol 62(5):1185–1190.  https://doi.org/10.1099/ijs.0.030585-0 CrossRefPubMedGoogle Scholar
  42. Lin TF, Huang HI, Shen FT, Young CC (2006) The protons of glucônico acid are the major factor responsible for the dissolution of tricalcium phosphate by Burkholderia cepacia CC-A174. Bioresource Tecnology 97(7):957–960.  https://doi.org/10.1016/j.biortech.2005.02.017
  43. Liu J, Peng M, Li Y (2012) Phylogenetic diversity of nitrogen-fxing bacteria and the nifH gene from mangrove rhizosphere soil. Can J Microbiol 58(4):531–539.  https://doi.org/10.1139/w2012-016
  44. López-Ortega MDP, Criollo-Campos PJ, Gómez-Vargas RM, Camelo-Rusinque M, Estrada-Bonilla G, Garrido-Rubiano MF, Bonilla-Buitrago R (2013) Characterization of diazotrophic phosphate solubilizing bacteria as growth promoters of maize plants. Rev. col. Biotechnol 15(2):115–123.  https://doi.org/10.15446/rev.colomb.biote.v15n2.36303
  45. Macedo MCM (2005) Pastagens no ecossistema Cerrados: evolução das pesquisas Para o desenvolvimento sustentável. Reunião anual da Sociedade Brasileira de Zootecnia 42:56–84Google Scholar
  46. Madhaiyan M, Saravanan VS, Jovi DBSS, Lee H, Thenmozhi R, Hari K, Sa T (2004) Occurrence of Gluconacetobacter diazotrophicus in tropical and subtropical plants of Western Ghats, India. Microbiol Res 159(3):233–243.  https://doi.org/10.1016/j.micres.2004.04.001
  47. Manivannan M, Tholkappian P (2013) Prevelence of Azospirillum isolates in tomato rhizosphere soils of coastal areas of Cuddalore district, Tamil Nadu. Int J recent Sci res 4(10):1610-1613. Available online at http://www.recentscientific.com
  48. Masson-Boivin C, Giraud E, Perret X, Batut J (2009) Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends Microbiol 17(10):458–466.  https://doi.org/10.1016/j.tim.2009.07.004 CrossRefPubMedGoogle Scholar
  49. Mateus RG, Barrios SC, Figueiredo UJ, Do Valle CB (2013) Agronomic evaluation of 324 intraspecific hybrids of Brachiaria decumbens in Brazil. Tropical Grasslands 1:99–100CrossRefGoogle Scholar
  50. Mehdipour-Moghaddam MJ, Emtiazi G, Bouzari M, Mostajeran A, Salehi Z (2010) Novel phytase and cellulase activities in endophytic Azospirilla. W Appl Sci J 10(10):1129–1135Google Scholar
  51. Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71(3):413–451.  https://doi.org/10.1128/MMBR.00012-07 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Miranda CHB, Urquiaga S, Boddey RM (1990) Selection of ecotypes of Panicum maximum for associated biological nitrogen fixation using the 15N isotope dilution technique. Soil Biol Biochem 22:657–663CrossRefGoogle Scholar
  53. Mommer L, Hinsinger P, Prigent-Combaret C, Visser EJ (2016) Advances in the rhizosphere: stretching the interface of life. Plant Soil 407(2016):1–8.  https://doi.org/10.1007/s11104-016-3040-9 CrossRefGoogle Scholar
  54. Mostajeran A, Amooaghaie R, Emtiazi G (2007) The participation of the cell wall hydrolytic enzymes in the initial colonization of Azospirillum brasilense on wheat roots. Plant Soil 291(1–2):239–248.  https://doi.org/10.1007/s11104-006-9189-x CrossRefGoogle Scholar
  55. Mutai C, Njuguna J, Ghimire S (2017) Brachiaria grasses (Brachiaria spp.) harbor a diverse bacterial community with multiple attributes beneficial to plant growth and development. MicrobiologyOpen 6(5): e00497.  https://doi.org/10.1002/mbo3.497
  56. Nandal V, Solanki M (2017) Isolation and molecular characterization of a potential zinc solubilizing bacteria for sustainable agriculture. International journal of basic and applied biology 4(1):18-21. Available online at http://www.krishisanskriti.org/Publication.html
  57. Nautiyal C (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170(1):265–270.  https://doi.org/10.1111/j.1574-6968.1999.tb13383.x
  58. Oksanen, Jari, Blanchet F G, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin P R, O'Hara R B, Simpson G L, Solymos P, Henry M, Stevens H, Szoecs E and Wagner H (2019). Vegan: community ecology package. R package version 2.5–4. https://CRAN.R-project.org/package=vegan
  59. Oliveira JTC, Silva GT, da Diniz WPS, Figueredo EF, dos Santos IB, de Lima DRM, Quecine MC, Júlia KuklinskySobral JK, Freire FJ (2018) Diazotrophic bacteria isolated from Brachiaria spp.: genetic and physiological diversity. Ciencia e Investigación Agraria 45(3):277–289.  https://doi.org/10.7764/rcia.v45i3.1949 CrossRefGoogle Scholar
  60. Pedraza RO, Ramírez-Mata A, Xiqui ML, Baca BE (2004) Aromatic amino acid aminotransferase activity and indole-3-acetic production by associative nitrogenfixing bacteria. FEMS Microbiol Lett 233(1):15–21.  https://doi.org/10.1016/j.femsle.2004.01.047 CrossRefPubMedGoogle Scholar
  61. Peng G, Wang H, Zhang G, Hou W, Liu Y, Wang ET, Tan Z (2006) Azospirillum melinis sp. nov., a group of diazotrophs isolated from tropical molasses grass. Int J Syst Evol Microbiol 56(6):1263–1271.  https://doi.org/10.1099/ijs.0.64025-0 CrossRefPubMedGoogle Scholar
  62. Peng G, Yuan Q, Li H, Zhang W, Tan Z (2008) Rhizobium oryzae sp. nov., isolated from the wild rice Oryza alta. Int J Syst Evol Microbiol 58(9):2158–2163.  https://doi.org/10.1099/ijs.0.65632-0 CrossRefPubMedGoogle Scholar
  63. Poly F, Monrozier LJ, Bally R (2001) Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152:95–103.  https://doi.org/10.1016/S0923-2508(00)01172-4 CrossRefPubMedGoogle Scholar
  64. Prakamhang J, Minamisawa K, Teamtaisong K, Boonkerd N, Teaumroong N (2009) The communities of endophytic diazotrophic bacteria in cultivated rice (Oryza sativa L.). Appl Soil Ecol 42(2):141–149.  https://doi.org/10.1016/j.apsoil.2009.02.008 CrossRefGoogle Scholar
  65. Reetha S, Selvakumar G, Bhuvaneswari G, Thamizhiniyan P, Ravimycin T (2014) Screening of cellulase and pectinase by using Pseudomonas fluorescence and Bacillus subtilis. International Letters of Natural Sciences 13:75–80.  https://doi.org/10.18052/www.scipress.com/ilns.13.75 CrossRefGoogle Scholar
  66. Reis Junior FB, Reis VM, Teixeira KRDS (2006) Restriction of 16S-23S intergenic rDNA for diversity evaluation of Azospirillum amazonense isolated from different Brachiaria spp. Pesq Agropec Bras 41(3):431–438.  https://doi.org/10.1590/S0100-204X2006000300009
  67. Reis Junior FB, Silva MF, Teixeira KRS, Urquiaga S, Reis VM (2004) Identificação de isolados de Azospirillum amazonense associados a Brachiaria spp., em diferentes épocas e condições de cultivo e produção de fitormônio pela bactéria. R Bras Ci Solo 28(1):103–113CrossRefGoogle Scholar
  68. Reis VM, Baldani VLD, Baldani JI (2015). Isolation, identification and biochemical characterization of Azospirillum spp. and other nitrogen-fixing bacteria. In: Cassán F, Okon Y, Creus C (eds) springer, Cham, pp. 3-26Google Scholar
  69. Reis VM, Reis Junior FB, Quesada DM, de Oliveira OC, Alves BJ, Urquiaga S, Boddey RM (2001) Biological nitrogen fixation associated with tropical pasture grasses. Austral J Plant Physiol 28(9):837–844.  https://doi.org/10.1071/pp01079 CrossRefGoogle Scholar
  70. Richardson AE, Barea JM, Mcneill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339.  https://doi.org/10.1007/s11104-009-9895-2 CrossRefGoogle Scholar
  71. Rodrigues EP, Rodrigues LS, de Oliveira ALM, Baldani VLD, Teixeira KRdosS, Urquiaga S, Reis VM (2008) Azospirillum amazonense inoculation: effects on growth, yield and N 2 fixation of rice (Oryza sativa L.). Plant Soil 302(1–2):249–261.  https://doi.org/10.1007/s11104-007-9476-1
  72. Rodriguez H, Gonzalez T, Goire I, Bashan Y (2004) Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp. Naturwissenschaften 91(11):552–555.  https://doi.org/10.1007/s00114-004-0566-0 CrossRefPubMedGoogle Scholar
  73. Roesch LFW, de Quadros PD, Camargo FA, Triplett EW (2007) Screening of diazotrophic bacteria Azopirillum spp. for nitrogen fixation and auxin production in multiple field sites in southern Brazil. World J Microbiol Biotechnol 23(10):1377–1383.  https://doi.org/10.1007/s11274-007-9376-9 CrossRefGoogle Scholar
  74. R Core Team (2018) R: a language and environment for statistical computing. In: R Foundation for statistical computing. Austria. URL, Vienna https://www.R-project.org/ Google Scholar
  75. Santos JDS, Viana TDO, Jesus CMD, Baldani VLD, Ferreira JS (2015) Inoculation and isolation of plant growth-promoting bacteria in maize grown in Vitória da Conquista, Bahia, Brazil. R Bras Ci Solo 39(1):78–85.  https://doi.org/10.1590/01000683rbcs20150725 CrossRefGoogle Scholar
  76. Santos MCM, dos Santos DR, Bakke OA, Bakke IA (2013). Ocorrência e atividade de bactérias diazotróficas em forrageiras cultivadas na Região semiárida no Brasil. Revista Caatinga 26(1):27-34. Available online at http://www.redalyc.org/articulo.oa?id=23712 7564005
  77. Saranraj P, Sivasakthivelan P, Sakthi SS (2013) Prevalence and production of plant growth promoting substance by Pseudomonas fluorescens isolated from paddy rhizosphere soil of Cuddalore district, Tamil Nadu. Afr J Basic Appl Sci 5(2):95–101.  https://doi.org/10.5829/idosi.ajbas.2013.5.2.2934 CrossRefGoogle Scholar
  78. Saravanan VS, Madhaiyan M, Thangaraju M (2007) Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66:1794–1798.  https://doi.org/10.1016/j.chemosphere.2006.07.067 CrossRefPubMedGoogle Scholar
  79. Sarwar M, Kremer RJ (1995) Enhanced suppression of plant growth through production of L-tryptophan-derived compounds by deleterious rhizobacteria. Plant Soil 172(2):261–269.  https://doi.org/10.1007/BF00011328 CrossRefGoogle Scholar
  80. Saxena B, Modi M, Modi VV (1986) Isolation and characterization of siderophores from Azospirillum lipoferum D-2. Microbiol 132(8):2219–2224.  https://doi.org/10.1099/00221287-132-8-2219 CrossRefGoogle Scholar
  81. Sayyed RZ, Chincholkar SB (2009) Siderophore producing A. feacalis more biocontrol potential Vis-a’-Vis chemical fungicide. Curr Microbiol 58(1):47–51.  https://doi.org/10.1007/s00284-008-9264-z CrossRefPubMedGoogle Scholar
  82. Schwab S, Terra LA, Baldani JI (2018) Genomic characterization of Nitrospirillum amazonense strain CBAmC, a nitrogen-fixing bacterium isolated from surface-sterilized sugarcane stems. Molecular Genetics and Genomics 293(4):997–1016.  https://doi.org/10.1007/s00438-018-1439-0 CrossRefPubMedGoogle Scholar
  83. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160(1):47–56.  https://doi.org/10.1016/0003-2697(87)90612-9 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Shigenaga AM, Argueso CT (2016) No hormone to rule them all: interactions of plant hormones during the responses of plants to pathogens. Semin Cell Dev Biol 56:174–189.  https://doi.org/10.1016/j.semcdb.2016.06.005 CrossRefPubMedGoogle Scholar
  85. Silva MCP, Figueiredo AF, Andreote FD, Cardoso EJBN (2013) Plant growth promoting bacteria in Brachiaria brizantha. World J Microbiol Biotechnol 29(1):163–171.  https://doi.org/10.1007/s11274-012-1169-0 CrossRefPubMedGoogle Scholar
  86. Singh RK, Mishra RP, Jaiswal HK, Kumar V, Pandey SP, Rao SB, Annapurna K (2006) Isolation and identification of natural endophytic rhizobia from rice (Oryza sativa L.) through rDNA PCR-RFLP and sequence analysis. Curr Microbiol 52(5):345–349.  https://doi.org/10.1007/s00284-005-0138-3 CrossRefPubMedGoogle Scholar
  87. Souza MS, de Baura VA, Santos SA, Fernandes-Júnior PI, Junior FBR, Marques MR, Paggi GM, Brasil MS (2017) Azospirillum spp. from native forage grasses in Brazilian Pantanal floodplain: biodiversity and plant growth promotion potential. World J Microbiol Biotechnol 33(4):1–13.  https://doi.org/10.1007/s11274-017-2251-4 CrossRefGoogle Scholar
  88. Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19(1):1–30.  https://doi.org/10.1080/07352680091139169 CrossRefGoogle Scholar
  89. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729.  https://doi.org/10.1093/molbev/mst197 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Tian B, Zhang C, Ye Y, Wen J, Wu Y, Wang H, Li H, Cai S, Cai W, Cheng Z, Lei S, Ma R, Lu C, Cao Y, Xu X, Zhang K (2017) Beneficial traits of bacterial endophytes belonging to the core communities of the tomato root microbiome. Agric Ecosyst Environ 247:14–156.  https://doi.org/10.1016/j.agee.2017.06.041 CrossRefGoogle Scholar
  91. Tortora M, Díaz-Ricci J, Pedraza R (2011) Azospirillum brasilense siderophores with antifungal activity against Colletotrichum acutatum. Arch Microbiol 193:275–286.  https://doi.org/10.1007/s00203-010-0672-7 CrossRefPubMedGoogle Scholar
  92. Tuimala, J (2004) Using ClustalX for multiple sequence alignment. Methods Enzymol 226:383–402Google Scholar
  93. USDA 2018- United States Department of Agriculture. Foreign Agriculture Service. Available in: http://www.usdabrazil.org.br/pt-br/. Accessed 27 Nov 2018
  94. Valle CB, Macedo MCM, Euclides VPB, Jank L, Resende RMS (2010) Gênero Brachiaria. In: da Fonseca DM, Martuscello JA (eds) Plantas forrageiras. Viçosa, UFV, pp 30–77Google Scholar
  95. Videira SS, de Oliveira DM, de Morais RF, Borges WL, Baldani VLD, Baldani JI (2012) Genetic diversity and plant growth promoting traits of diazotrophic bacteria isolated from two Pennisetum purpureum Schum. Genotypes grown in the field. Plant Soil 356(1–2):51–66.  https://doi.org/10.1007/s11104-011-1082-6 CrossRefGoogle Scholar
  96. Verma SC, Ladha J, Tripathi AK (2001) Evaluation of plant growth promotion and colonization ability of endophytic diazotrophs from deep water rice. J Biotechnol 91(2–3):127–141.  https://doi.org/10.1016/S0168-1656(01)00333-9 CrossRefPubMedGoogle Scholar
  97. Wang RF, Cao WW, Cerniglia CE (1996) Phylogenetic analysis of Fusobacterium prausnitzii based upon the 16S rRNA gene sequence and PCR confirmation. Int J Syst Bacteriol 46(1):341–343.  https://doi.org/10.1099/00207713-46-1-341 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nathália Virgínia da Silva Ribeiro
    • 1
  • Márcia Soares Vidal
    • 2
  • Sanzio Carvalho Lima Barrios
    • 3
  • Vera Lúcia Divan Baldani
    • 2
  • José Ivo Baldani
    • 2
    Email author
  1. 1.Crop Sciences Graduate CourseFederal Rural University of Rio de JaneiroSeropédicaBrazil
  2. 2.Embrapa AgrobiologiaSeropédicaBrazil
  3. 3.Embrapa Gado de CorteCampo GrandeBrazil

Personalised recommendations