Plant and Soil

, Volume 443, Issue 1–2, pp 429–447 | Cite as

Colonization of Arabidopsis thaliana by Herbaspirillum seropedicae promotes its growth and changes its proteomic profile

  • Mariana Ramos Leandro
  • Patrícia Louzada Rangel
  • Tamires Cruz dos Santos
  • Leandro Fernandes Andrade
  • Luciano de Souza Vespoli
  • Ana Lidia Soares Rangel
  • Suzane Ariadina de Souza
  • Roberta Ribeiro Barbosa
  • Lucas Zanchetta Passamani
  • Vanildo Silveira
  • Gonçalo Apolinário de Souza FilhoEmail author
Regular Article


Background and aims

Herbaspirillum seropedicae is a Plant Growth Promoting Bacterium (PGPB) that colonizes crops of economic interest, especially grasses. Here, we aimed to characterize the association of H. seropedicae with the model dicot Arabidopsis thaliana and its effect on plant growth. The molecular pathways activated during the association were monitored by comparative proteomics.


Arabidopsis thaliana seedlings were inoculated with H. seropedicae and grown for 28 days. Plant growth promotion was analyzed by quantifying the total leaf area and the fresh and dry biomass. The endophytic bacterial population was quantified by counts of colony-forming units (CFU), and the bacterial location in plant tissues was determined by epifluorescence microscopy. Changes in the proteomic profile of the plants were investigated by ESI-LC-MS/MS.


Herbaspirillum seropedicae colonized the roots of A. thaliana, but was absent from the shoots. The association promoted plant growth significantly. The proteomic analysis revealed several protein groups regulated in the roots and shoots during the association, with an emphasis on the photosynthesis and phenylpropanoid biosynthesis.


Herbaspirillum seropedicae colonizes A. thaliana roots and promotes its growth, leading to an increase in biomass and the modulation of specific proteomic responses. These findings open new perspectives into the study of the molecular basis of the positive interaction between H. seropedicae and host plants, both monocots and dicots.


PGPB Beneficial bacteria Plant-bacteria Endophytic bacteria Biological nitrogen fixation 


Supplementary material

11104_2019_4236_MOESM1_ESM.docx (195 kb)
Figure S1 (DOCX 194 kb)
11104_2019_4236_MOESM2_ESM.docx (164 kb)
Figure S2 (DOCX 163 kb)
11104_2019_4236_MOESM3_ESM.docx (206 kb)
Table S1 (DOCX 205 kb)
11104_2019_4236_MOESM4_ESM.docx (390 kb)
Table S2 (DOCX 390 kb)
11104_2019_4236_MOESM5_ESM.xlsx (11 kb)
Table S3 (XLSX 10 kb)


  1. Alberton D, Müller-Santos M, Brusamarello-Santos LCC, Valdameri G, Cordeiro FA, Yates MG, de Oliveira Pedrosa F, de Souza EM (2013) Comparative proteomics analysis of the rice roots colonized by Herbaspirillum seropedicae strain SmR1 reveals induction of the methionine recycling in the plant host. J Proteome Res 12:4757–4768. CrossRefPubMedGoogle Scholar
  2. Amaral FP, Bueno JCF, Hermes VS, Arisi ACM (2014) Gene expression analysis of maize seedlings (DKB240 variety) inoculated with plant growth promoting bacterium Herbaspirillum seropedicae. Symbiosis 62:41–50. CrossRefGoogle Scholar
  3. Anderson JP, Thatcher LF, Singh KB (2005) Plant defence responses: conservation between models and crops. Funct Plant Biol 32:21. CrossRefGoogle Scholar
  4. Ascencio-Ibanez JT, Sozzani R, Lee T-J et al (2008) Global analysis of Arabidopsis gene expression uncovers a complex Array of changes impacting pathogen response and cell cycle during Geminivirus infection. Plant Physiol 148:436–454. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Baldani VL, Baldani JI, Döbereiner J (2002) Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae and Burkholderia spp. Biol Fertil Soils 30:485–491. CrossRefGoogle Scholar
  6. Banaei-Asl F, Farajzadeh D, Bandehagh A, Komatsu S (2016) Comprehensive proteomic analysis of canola leaf inoculated with a plant growth-promoting bacterium, Pseudomonas fluorescens, under salt stress. Biochim Biophys Acta, Proteins Proteomics 1864:1222–1236. CrossRefGoogle Scholar
  7. Bastián F, Cohen A, Piccoli P, Luna V, Bottini* R, Baraldi R, Bottini R (1998) Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regul 24:7–11. CrossRefGoogle Scholar
  8. Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18CrossRefGoogle Scholar
  9. Berger B, Brock AK, Ruppel S (2013) Nitrogen supply influences plant growth and transcriptional responses induced by Enterobacter radicincitans in Solanum lycopersicum. Plant and Soil 370 (1–2):641–652.
  10. Bernards MA, Båstrup-Spohr L (2008) Phenylpropanoid metabolism induced by wounding and insect herbivory. In: Induced plant resistance to herbivory. Springer Netherlands, Dordrecht, pp 189–211CrossRefGoogle Scholar
  11. Brock AK, Berger B, Mewis I, Ruppel S (2013) Impact of the PGPB Enterobacter radicincitans DSM 16656 on growth, Glucosinolate profile, and immune responses of Arabidopsis thaliana. Microb Ecol 65:661–670. CrossRefPubMedGoogle Scholar
  12. Brotman Y, Landau U, Cuadros-Inostroza Á, Takayuki T, Fernie AR, Chet I, Viterbo A, Willmitzer L (2013) Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathog 9:e1003221. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Brusamarello-Santos LCC, Pacheco F, Aljanabi SMM, Monteiro RA, Cruz LM, Baura VA, Pedrosa FO, Souza EM, Wassem R (2012) Differential gene expression of rice roots inoculated with the diazotroph Herbaspirillum seropedicae. Plant Soil 356:113–125. CrossRefGoogle Scholar
  14. Canellas LP, Balmori DM, Médici LO, Aguiar NO, Campostrini E, Rosa RCC, Façanha AR, Olivares FL (2013) A combination of humic substances and Herbaspirillum seropedicae inoculation enhances the growth of maize (Zea mays L.). Plant Soil 366:119–132. CrossRefGoogle Scholar
  15. Chi F, Yang P, Han F, Jing Y, Shen S (2010) Proteomic analysis of rice seedlings infected by Sinorhizobium meliloti 1021. Proteomics 10:1861–1874. CrossRefPubMedGoogle Scholar
  16. Cohen AC, Bottini R, Piccoli PN (2008) Azospirillum brasilense Sp 245 produces ABA in chemically-defined culture medium and increases ABA content in arabidopsis plants. Plant Growth Regul 54:97–103. CrossRefGoogle Scholar
  17. Damerval C, De Vienne D, Zivy M, Thiellement H (1986) Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins. Electrophoresis 7:52–54. CrossRefGoogle Scholar
  18. Damiani I, Baldacci-Cresp F, Hopkins J, Andrio E, Balzergue S, Lecomte P, Puppo A, Abad P, Favery B, Hérouart D (2012) Plant genes involved in harbouring symbiotic rhizobia or pathogenic nematodes. New Phytol 194:511–522. CrossRefPubMedGoogle Scholar
  19. de Nogueira EM, Vinagre F, Masuda HP et al (2001) Expression of sugarcane genes induced by inoculation with Gluconacetobacter diazotrophicus and Herbaspirillum rubrisubalbicans. Database 24:199–206. CrossRefGoogle Scholar
  20. Dey S, Wenig M, Langen G, Sharma S, Kugler KG, Knappe C, Hause B, Bichlmeier M, Babaeizad V, Imani J, Janzik I, Stempfl T, Hückelhoven R, Kogel KH, Mayer KFX, Vlot AC (2014) Bacteria-triggered systemic immunity in barley is associated with WRKY and ETHYLENE RESPONSIVE FACTORs but not with salicylic acid. Plant Physiol 166:2133–2151. CrossRefPubMedPubMedCentralGoogle Scholar
  21. DeYoung BJ, Innes RW (2006) Plant NBS-LRR proteins in pathogen sensing and host defense. Nat Immunol 7:1243–1249CrossRefGoogle Scholar
  22. Distler U, Kuharev J, Navarro P, Levin Y, Schild H, Tenzer S (2014) Drift time-specific collision energies enable deep-coverage data-independent acquisition proteomics. Nat Methods 11:167–170. CrossRefPubMedGoogle Scholar
  23. Distler U, Kuharev J, Navarro P, Tenzer S (2016) Label-free quantification in ion mobility-enhanced data-independent acquisition proteomics. Nat Protoc 11:795–812. CrossRefPubMedGoogle Scholar
  24. Döbereiner J, Baldani VLD, Baldini JI (1995) Como Isolar e identificar bactérias diazotróficas de plantas não-leguminosas. EMBRAPA-SPIGoogle Scholar
  25. Easlon HM, Bloom AJ (2014) Easy leaf area: automated digital image analysis for rapid and accurate measurement of leaf area. Appl Plant Sci 2:1400033. CrossRefGoogle Scholar
  26. Elbeltagy A, Nishioka K, Sato T, Suzuki H, Ye B, Hamada T, Isawa T, Mitsui H, Minamisawa K (2001) Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Appl Environ Microbiol 67:5285–5293. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Gyaneshwar P, James EK, Reddy PM, Ladha JK (2002) Herbaspirillum colonization increases growth and nitrogen accumulation in aluminium-tolerant rice varieties. New Phytol 154:131–145. CrossRefGoogle Scholar
  28. Hasler K, Bröring S, Omta SWF, Olfs HW (2015) Life cycle assessment (LCA) of different fertilizer product types. Eur J Agron 69:41–51. CrossRefGoogle Scholar
  29. Heydarian Z, Gruber M, Glick BR, Hegedus DD (2018) Gene expression patterns in roots of camelina sativa with enhanced salinity tolerance arising from inoculation of soil with plant growth promoting bacteria producing 1-aminocyclopropane-1-carboxylate deaminase or expression the corresponding acds gene. Front Microbiol 9:1297. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. Circ Calif Agric Exp Stn 347:32Google Scholar
  31. Humphry M, Bednarek P, Kemmerling B, Koh S, Stein M, Gobel U, Stuber K, Pislewska-Bednarek M, Loraine A, Schulze-Lefert P, Somerville S, Panstruga R (2010) A regulon conserved in monocot and dicot plants defines a functional module in antifungal plant immunity. Proc Natl Acad Sci 107:21896–21901. CrossRefPubMedGoogle Scholar
  32. Ibort P, Imai H, Uemura M, Aroca R (2018) Proteomic analysis reveals that tomato interaction with plant growth promoting bacteria is highly determined by ethylene perception. J Plant Physiol 220:43–59. CrossRefPubMedGoogle Scholar
  33. James EK, Olivares FL, Baldani JI, Döbereiner J (1997) Herbaspirillum, an endophytic diazotroph colonizing vascular tissue 3Sorghum bicolor L. Moench J Exp Bot 48:785–798. CrossRefGoogle Scholar
  34. James EK, Gyaneshwar P, Mathan N, Barraquio WL, Reddy PM, Iannetta PPM, Olivares FL, Ladha JK (2002) Infection and colonization of Rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant-Microbe Interact 15:894–906. CrossRefPubMedGoogle Scholar
  35. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kandasamy S, Loganathan K, Muthuraj R, Duraisamy S, Seetharaman S, Thiruvengadam R, Ponnusamy B, Ramasamy S (2009) Understanding the molecular basis of plant growth promotional effect of Pseudomonas fluorescens on rice through protein profiling. Proteome Sci 7:47. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kaul S, Sharma T, Dhar MK (2016) “Omics” tools for better understanding the plant–endophyte interactions. Front Plant Sci 7:955. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Khan A, Hossain MT, Park HC, Yun DJ, Shim SH, Chung YR (2016) Development of root system architecture of Arabidopsis thaliana in response to colonization by Martelella endophytica YC6887 depends on auxin signaling. Plant Soil 405:81–96. CrossRefGoogle Scholar
  39. Koornneef M, Meinke D (2010) The development of Arabidopsis as a model plant. Plant J 61:909–921. CrossRefPubMedGoogle Scholar
  40. Kuklinsky-Sobral J, Araújo WL, Mendes R, Pizzirani-Kleiner AA, Azevedo JL (2005) Isolation and characterization of endophytic bacteria from soybean (Glycine max) grown in soil treated with glyphosate herbicide. Plant Soil 273:91–99. CrossRefGoogle Scholar
  41. Kwon YS, Lee DY, Rakwal R, Baek SB, Lee JH, Kwak YS, Seo JS, Chung WS, Bae DW, Kim SG (2016) Proteomic analyses of the interaction between the plant-growth promoting rhizobacterium Paenibacillus polymyxa E681 and Arabidopsis thaliana. Proteomics 16:122–135. CrossRefPubMedGoogle Scholar
  42. Lieberherr D, Wagner U, Dubuis P-H, Métraux JP, Mauch F (2003) The rapid induction of glutathione S-transferases AtGSTF2 and AtGSTF6 by Avirulent Pseudomonas syringae is the result of combined salicylic acid and ethylene signaling. Plant Cell Physiol 44:750–757. CrossRefPubMedGoogle Scholar
  43. Magalhães LC, Maltempi E et al (2001) 16S ribosomal DNA characterization of nitrogen-fixing Bacteria isolated from Banana (Musa spp.) and pineapple (Ananas comosus (L.) Merril). Appl Environ Microbiol 67:2375–2379. CrossRefGoogle Scholar
  44. Mandal SM, Chakraborty D, Dey S (2010) Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav 5:359–368CrossRefGoogle Scholar
  45. Misra RC, Sandeep KM et al (2016) A thaumatin-like protein of Ocimum basilicum confers tolerance to fungal pathogen and abiotic stress in transgenic Arabidopsis. Sci Rep 6:25340. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Monteiro RA, Schmidt MA, de Baura VA et al (2008) Early colonization pattern of maize ( Zea mays L . Poales , Poaceae ). Microscopy 937:932–937. CrossRefGoogle Scholar
  47. Monteiro RA, Balsanelli E, Wassem R, Marin AM, Brusamarello-Santos LCC, Schmidt MA, Tadra-Sfeir MZ, Pankievicz VCS, Cruz LM, Chubatsu LS, Pedrosa FO, Souza EM (2012) Herbaspirillum-plant interactions: Microscopical, histological and molecular aspects. Plant Soil 356:175–196. CrossRefGoogle Scholar
  48. Nylander M, Svensson J, Palva ET, Welin BV (2001) Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Mol Biol 45:263–279. CrossRefPubMedGoogle Scholar
  49. Oh S-K, Baek K-H, Seong ES, Joung YH, Choi GJ, Park JM, Cho HS, Kim EA, Lee S, Choi D (2010) CaMsrB2, pepper methionine sulfoxide reductase B2, is a novel defense regulator against oxidative stress and pathogen attack. Plant Physiol 154:245–261. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Olivares FL, James EK, Baldani JI, Döbereiner J (1997) Infection of mottled stripe disease-susceptible and resistant sugar cane varieties by the endophytic diazotroph Herbaspirillum. New Phytol 135:723–737. CrossRefGoogle Scholar
  51. Passamani LZ, Bertolazi AA, Ramos AC, Santa-Catarina C, Thelen JJ, Silveira V (2018) Embryogenic competence Acquisition in Sugar Cane Callus is Associated with differential H+-pump abundance and activity. J Proteome Res 17:2767–2779. CrossRefPubMedGoogle Scholar
  52. Pieterse CM, van Wees SC, Hoffland E, van Pelt JA, van Loon LC (1996) Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8:1225–1237. CrossRefPubMedPubMedCentralGoogle Scholar
  53. Piršelová B, Kuna R, Libantová J, Moravčíková J, Matušíková I (2011) Biochemical and physiological comparison of heavy metal-triggered defense responses in the monocot maize and dicot soybean roots. Mol Biol Rep 38:3437–3446. CrossRefPubMedGoogle Scholar
  54. Poupin MJ, Timmermann T, Vega A, Zuñiga A, González B (2013) Effects of the plant growth-promoting bacterium Burkholderia phytofirmans PsJN throughout the life cycle of Arabidopsis thaliana. PLoS One 8:e69435. CrossRefPubMedPubMedCentralGoogle Scholar
  55. Ramamoorthy V, Raguchander T, Samiyappan R (2002) Induction of defense-related proteins in tomato roots treated with Pseudomonas fluorescens Pf1 and Fusarium oxysporum f. sp. lycopersiciGoogle Scholar
  56. Roncato-Maccari LD, Ramos HJ, Pedrosa FO et al (2003) Endophytic Herbaspirillum seropedicae expresses nif genes in gramineous plants. FEMS Microbiol Ecol 45:39–47. CrossRefPubMedGoogle Scholar
  57. Rothballer M, Eckert B, Schmid M, Fekete A, Schloter M, Lehner A, Pollmann S, Hartmann A (2008) Endophytic root colonization of gramineous plants by Herbaspirillum frisingense. FEMS Microbiol Ecol 66:85–95. CrossRefPubMedGoogle Scholar
  58. Roy S, Nandi AK (2017) Arabidopsis thaliana methionine sulfoxide reductase B8 influences stress-induced cell death and effector-triggered immunity. Plant Mol Biol 93:109–120. CrossRefPubMedGoogle Scholar
  59. Santoyo G, Moreno-Hagelsieb G, del Carmen O-MM, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99CrossRefGoogle Scholar
  60. Schmidt MA, Souza EM, Baura V, Wassem R, Yates MG, Pedrosa FO, Monteiro RA (2011) Evidence for the endophytic colonization of Phaseolus vulgaris (common bean) roots by the diazotroph Herbaspirillum seropedicae. Braz J Med Biol Res 44:182–185. CrossRefPubMedGoogle Scholar
  61. Schneiter R, Di Pietro A (2013) The CAP protein superfamily: function in sterol export and fungal virulence. Biomol Concepts 4:519–525. CrossRefPubMedGoogle Scholar
  62. Soto MJ, Domínguez-Ferreras A, Pérez-Mendoza D, Sanjuán J, Olivares J (2009) Mutualism versus pathogenesis: the give-and-take in plant-bacteria interactions. Cell Microbiol 11:381–388. CrossRefPubMedGoogle Scholar
  63. Souza ALSR, De Souza SA, De Oliveira MVV et al (2016) Endophytic colonization of Arabidopsis thaliana by Gluconacetobacter diazotrophicus and its effect on plant growth promotion, plant physiology, and activation of plant defense. Plant Soil 399:257–270. CrossRefGoogle Scholar
  64. Sukweenadhi J, Kim YJ, Choi ES, Koh SC, Lee SW, Kim YJ, Yang DC (2015) Paenibacillus yonginensis DCY84 T induces changes in Arabidopsis thaliana gene expression against aluminum, drought, and salt stress. Microbiol Res 172:7–15. CrossRefPubMedGoogle Scholar
  65. Woodward AW, Bartel B (2018) Biology in bloom: a primer on the arabidopsis thaliana model system. Genetics 208:1337–1349. CrossRefPubMedPubMedCentralGoogle Scholar
  66. Zhai C, Lan J, Wang H, Li L, Cheng X, Liu G (2011) Rice dehydrin K-segments have in vitro antibacterial activity. Biochem 76:645–650. CrossRefGoogle Scholar
  67. Zhao S, Wei H, Lin C-Y, Zeng Y, Tucker MP, Himmel ME, Ding SY (2016) Burkholderia phytofirmans inoculation-induced changes on the shoot cell anatomy and Iron accumulation reveal novel components of Arabidopsis-endophyte interaction that can benefit downstream biomass deconstruction. Front Plant Sci 7:24. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mariana Ramos Leandro
    • 1
  • Patrícia Louzada Rangel
    • 1
  • Tamires Cruz dos Santos
    • 1
  • Leandro Fernandes Andrade
    • 1
  • Luciano de Souza Vespoli
    • 1
  • Ana Lidia Soares Rangel
    • 1
  • Suzane Ariadina de Souza
    • 1
  • Roberta Ribeiro Barbosa
    • 1
  • Lucas Zanchetta Passamani
    • 1
  • Vanildo Silveira
    • 1
  • Gonçalo Apolinário de Souza Filho
    • 1
    Email author
  1. 1.Laboratório de Biotecnologia (Setor de Biologia Integrativa)Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF)Rio de JaneiroBrazil

Personalised recommendations