Plant and Soil

, Volume 443, Issue 1–2, pp 27–39 | Cite as

Effect of nickel concentration and soil pH on metal accumulation and growth in tropical agromining ‘metal crops’

  • Philip Nti Nkrumah
  • Guillaume Echevarria
  • Peter D. Erskine
  • Rufus L. Chaney
  • Sukaibin Sumail
  • Antony van der EntEmail author
Regular Article



This study investigated the physico-geochemical properties of three types of  ultramafic substrates in Sabah (Malaysia) and further characterised their influence on nickel (Ni) accumulation in two selected tropical ‘metal crops’ (Phyllanthus rufuschaneyi and Rinorea cf. bengalensis).


Three experiments, consisting of a randomised block growth trial in large pots over 12 months in Sabah, were conducted: i) soil ratio experiment (Cambisol:Ferralsol:Leptosol), ii) soluble Ni dosing experiment with added 0, 60, 240, 600 mg Ni kg−1, and iii) soil pH adjustments (pH 5.2, 5.8 and 6.4) experiment.


The results show that the low pH status of Ferralsol did not result in increased extractable Ni concentrations, indicating that Ni-bearing phases and mineralogy play a major role in Ni extractability in these substrates. The increasing order of extractable Ni concentrations was Ferralsol < Leptosol < Cambisol. The selected ‘metal crops’ had remarkable shoot biomass (~40 g pot−1) and foliar Ni concentrations (>15 g kg−1 in P. rufuschaneyi) in the Cambisol, >5-fold higher relative to that recorded in Leptosol and Ferralsol. Mixing the Cambisol with the other substrates significantly improved Ni yield in both species relative to the individual substrates. The effect of Ni addition on the selected ‘metal crops’ was species-dependent, whereas reduction of soil pH in Cambisol significantly reduced Ni yield in both species.


Nickel accumulation patterns in ‘metal crops’ in response to the diverse ultramafic soils in the tropics are influenced by the physico-geochemical characteristics of the soil types. Soil Ni extractability in these soils is more dependent on the Ni-bearing phases and mineralogy rather than the pH status. This study provides useful information on plant-soil interactions required for identifying suitable substrates for implementing  tropical Ni agromining.


Accumulation pattern Metal crop Nickel extractability Nickel-bearing phases Nickel solubility Tropical ultramafic soils 



We acknowledge Sabah Parks for granting permission to conduct research in Kinabalu Park, and the Sabah Biodiversity Council for research permits. We thank Deisie Suin for taking care of the nursery. We also thank Richard Yulong, Weiter Minas and Vinson Yempios for their help in the nursery. The French National Research Agency through the national ‘Investissements d’avenir’ program (ANR-10-LABX-21, LABEX RESSOURCES21) is acknowledged for funding support to A. van der Ent and P.N. Nkrumah. A. van der Ent was the recipient of a Discovery Early Career Researcher Award (DE160100429) from the Australian Research Council. P.N. Nkrumah was the recipient of an Australian Government Research Training Program Scholarship and UQ Centennial Scholarship at The University of Queensland, Australia.


  1. Alexander EB (2004) Serpentine soil redness, differences among peridotite and serpentinite materials, Klamath Mountains, California. Int Geol Rev 46:754–764CrossRefGoogle Scholar
  2. Baker A, Brooks RR (1989) Terrestrial higher plants which hyper accumulate metallic elements. Biorecovery 1:81–126Google Scholar
  3. Bani A, Echevarria G, Sulçe S, Morel JL (2015) Improving the agronomy of Alyssum murale for extensive phytomining: a five-year field study. Int J Phytoremediat 17:117–127CrossRefGoogle Scholar
  4. Becquer T, Bourdon E, Pétard J (1995) Disponibilité du nickel le long d'une toposéquence de sols développés sur roches ultramafiques de Nouvelle-Calédonie. Comptes rendus de l'Académie des sciences. Série 2. Sciences de la terre et des planètes 321(7):585–592Google Scholar
  5. Becquer T, Pétard J, Duwig C, Bourdon E, Moreau R, Herbillon AJ (2001) Mineralogical, chemical and charge properties of Geric Ferralsol from New Caledonia. Geoderma 103:291–306CrossRefGoogle Scholar
  6. Becquer T, Quantin C, Rotté-Capet S, Ghanbaja J, Mustin C, Herbillon AJ (2006) Sources of trace metals in Ferralsol in New Caledonia. Eur J Soil Sci 57:200–213CrossRefGoogle Scholar
  7. Bouman R, van Welzen P, Sumail S, Echevarria G, Erskine PD, van der Ent A (2018) Phyllanthus rufuschaneyi: a new nickel hyperaccumulator from Sabah (Borneo Island) with potential for tropical agromining. Bot Stud 59(1):9. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Brooks RR, Wither ED (1977) Nickel accumulation by Rinorea bengalensis (Wall.) O.K. J Geochem Explor 7:295–300CrossRefGoogle Scholar
  9. Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV, Sparks DL (2007) Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J Environ Qual 36:1429–1433CrossRefGoogle Scholar
  10. Chaney RL, Baker AJM, Morel JL (2018) The long road to developing agromining/phytomining. In: Van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: extracting unconventional resources from plants, mineral resource reviews series. Springer, Cham, pp 1–17Google Scholar
  11. Chardot V, Echevarria G, Gury M, Massoura S, Morel JL (2007) Nickel bioavailability in an ultramafic toposequence in the Vosges Mountains (France). Plant Soil 293:7–21CrossRefGoogle Scholar
  12. Denslow J, Vitousek P, Schultz J (1987) Bioassays of nutrient limitation in a tropical rain forest soil. Oecologia 74:370–376CrossRefGoogle Scholar
  13. Echevarria G (2018) Genesis and behaviour of ultramafic soils and consequences for nickel biogeochemistry. In: Van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: extracting unconventional resources from plants, mineral resource reviews series. Springer, Cham, pp 135–156CrossRefGoogle Scholar
  14. Echevarria G, Stamatia Tina M, Thibault S, Becquer T, Schwartz C, Morel JL (2006) Assessment and control of the bioavailability of nickel in soils. Environ Toxicol Chem 25:643–651CrossRefGoogle Scholar
  15. Erskine PD, Lee G, Fogliani B, L’Huillier L, McCoy S (2018) Incorporating hyperaccumulator plants into mine rehabilitation in the Asia-Pacific region. In: Van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: farming for metals: extracting unconventional resources using plants. Springer International Publishing, Cham, pp 189–204CrossRefGoogle Scholar
  16. Galey M, van der Ent A, Iqbal M, Rajakaruna N (2017) Ultramafic geoecology of South and Southeast Asia. Bot Stud 58:18. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gleeson SA, Butt CRM, Elias M (2003) Nickel laterites: a review. Soc Econ Geol Newsl 54:1–18Google Scholar
  18. Jaffré T, Schmid M (1974) Accumulation du nickel par une Rubiacée de Nouvelle-Calédonie, Psychotria douarrei (G. Beauvisage) Däniker. Comptes Rendus de l'Académie des Sciences Série D: Sciences Naturelles 278:1727–1730Google Scholar
  19. Kidd PS, Bani A, Benizri E, Gonnelli C, Hazotte C, Kisser J, Konstantinou M, Kuppens T, Kyrkas D, Laubie B, Malina R, Morel JL, Olcay H, Pardo T, Pons MN, Prieto-Fernández Á, Puschenreiter M, Quintela-Sabarís C, Ridard C, Rodríguez-Garrido B, Rosenkranz T, Rozpądek P, Saad R, Selvi F, Simonnot MO, Tognacchini A, Turnau K, Ważny R, Witters N, Echevarria G (2018) Developing sustainable agromining systems in agricultural ultramafic soils for nickel recovery. Front Environ Sci 6.
  20. Kukier U, Peters CA, Chaney RL, Angle JS, Roseberg RJ (2004) The effect of pH on metal accumulation in two Alyssum species. J Environ Qual 33:2090–2102CrossRefGoogle Scholar
  21. Li Y-M, Chaney RL, Brewer EP, Angle JS, Nelkin J (2003) Phytoextraction of nickel and cobalt by hyperaccumulator species grown on nickel-contaminated soils. Environ Sci Technol 37:1463–1468Google Scholar
  22. Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42:421–428CrossRefGoogle Scholar
  23. Kukier U, Chaney RL (2001) Amelioration of nickel phytotoxicity in muck and mineral soils. J Environ Qual 30:1949–1960Google Scholar
  24. Massoura ST, Echevarria G, Leclerc-Cessac E, Morel JL (2004) Response of excluder, indicator, and hyperaccumulator plants to nickel availability in soils. Aust J Soil Res 42:933–938CrossRefGoogle Scholar
  25. Massoura ST, Echevarria G, Becquer T, Ghanbaja J, Leclerc-Cessac E, Morel J-L (2006) Control of nickel availability by nickel bearing minerals in natural and anthropogenic soils. Geoderma 136:28–37CrossRefGoogle Scholar
  26. Nkrumah PN, Baker AJM, Chaney RL, Erskine PD, Echevarria G, Morel J-L, van der Ent A (2016a) Current status and challenges in developing nickel phytomining: an agronomic perspective. Plant Soil 406:55–69CrossRefGoogle Scholar
  27. Nkrumah PN, Erskine PD, Echevarria G, van der Ent A (2016b) Progress in tropical nickel phytomining. In: Life-of-mine 2016 conference. Melbourne, The Australasian Institute of Mining and Metallurgy, pp 135–137Google Scholar
  28. Nkrumah P, Chaney RL, Morel JL (2018a) Agronomy of ‘metal crops’ used in agromining. In: Van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: extracting unconventional resources from plants, mineral resource reviews series. Springer, Cham, pp 19–38CrossRefGoogle Scholar
  29. Nkrumah P, Echevarria G, Erskine P, van der Ent A (2018b) Phytomining: using plants to extract valuable metals from mineralised wastes and uneconomic resources. In: Clifford MJ, Perrons RK, Ali SH, Grice TA (eds) Extracting innovations: mining, energy, and technological change in the digital age. CRC Press, United States, pp 313–324Google Scholar
  30. Nkrumah P, Echevarria G, Erskine PD, van der Ent A (2018c) Nickel hyperaccumulation in Antidesma montis-silam: from herbarium discovery to collection in the native habitat. Ecol Res 33:675–685CrossRefGoogle Scholar
  31. Nkrumah PN, Echevarria G, Erskine PD, van der Ent A (2018d) Contrasting nickel and zinc hyperaccumulation in subspecies of Dichapetalum gelonioides from Southeast Asia. Sci Rep 8:9659. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Nkrumah PN, Tisserand R, Chaney RL, Baker AJM, Morel JL, Goudon R, Erskine PD, Echevarria G, van der Ent A (2019a) The first tropical ‘metal farm’: some perspectives from field and pot experiments. J Geochem Explor 198:114–122CrossRefGoogle Scholar
  33. Nkrumah PN, Echevarria G, Erskine PD, Chaney RL, Sumail S, van der Ent A (2019b) Growth effects in tropical nickel-agromining ‘metal crops' in response to nutrient dosing. J Plant Nutr Soil Sci.
  34. Nkrumah PN, Echevarria G, Erskine PD, Chaney RL, Sumail S, van der Ent A (2019c) Soil amendments affecting nickel uptake and growth performance of tropical ‘metal crops’ used for agromining. J Geochem Explor 203:78–86CrossRefGoogle Scholar
  35. Proctor J (2003) Vegetation and soil and plant chemistry on ultramafic rocks in the tropical Far East. Perspect Plant Ecol Syst 6:105–124CrossRefGoogle Scholar
  36. Raous S, Echevarria G, Sterckeman T, Hanna K, Thomas F, Martins ES, Becquer T (2013) Potentially toxic metals in ultramafic mining materials: identification of the main bearing and reactive phases. Geoderma 192:111–119CrossRefGoogle Scholar
  37. Reeves RD, Baker AJM, Jaffré T, Erskine PD, Echevarria G, van der Ent A (2018) A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol 218:407–411CrossRefGoogle Scholar
  38. Siebecker MG, Chaney RL, Sparks DL (2018) Natural speciation of nickel at the micrometer scale in serpentine (ultramafic) topsoils using microfocused X-ray fluorescence, diffraction, and absorption. Geochem T 19:14. CrossRefGoogle Scholar
  39. van der Ent A, Mulligan D (2015) Multi-element concentrations in plant parts and fluids of Malaysian nickel hyperaccumulator plants and some economic and ecological considerations. J Chem Ecol 41:396–408CrossRefGoogle Scholar
  40. van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013a) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334CrossRefGoogle Scholar
  41. van der Ent A, Baker AJM, van Balgooy MMJ, Tjoa A (2013b) Ultramafic nickel laterites in Indonesia (Sulawesi, Halmahera): mining, nickel hyperaccumulators and opportunities for phytomining. J Geochem Explor 128:72–79CrossRefGoogle Scholar
  42. van der Ent A, Baker AJM, Reeves RD, Chaney RL, Anderson CWN, Meech JA, Erskine PD, Simonnot M-O, Vaughan J, Morel J-L, Echevarria G, Fogliani B, Rongliang Q, Mulligan DR (2015a) Agromining: farming for metals in the future? Environ Sci Technol 49:4773–4780CrossRefGoogle Scholar
  43. van der Ent A, Erskine P, Sumail S (2015b) Ecology of nickel hyperaccumulator plants from ultramafic soils in Sabah (Malaysia). Chemoecology 25:243–259CrossRefGoogle Scholar
  44. van der Ent A, Echevarria G, Tibbett M (2016) Delimiting soil chemistry thresholds for nickel hyperaccumulator plants in Sabah (Malaysia). Chemoecology 26:67–82CrossRefGoogle Scholar
  45. van der Ent A, Cardace D, Tibbett M, Echevarria G (2018) Ecological implications of pedogenesis and geochemistry of ultramafic soils in Kinabalu Park (Malaysia). Catena 160:154–169CrossRefGoogle Scholar
  46. van der Ent A, Nkrumah PN, Tibbett M, Echevarria G (2019) Evaluating soil extraction methods for chemical characterization of ultramafic soils in Kinabalu Park (Malaysia). J Geochem Explor 196:235–246CrossRefGoogle Scholar
  47. Veenendaal EM, Swaine MD, Lecha RT, Walsh MF, Abebrese IK, Owusu-Afriyie K (1996) Responses of West African forest tree seedlings to irradiance and soil fertility. Funct Ecol 10:501–511CrossRefGoogle Scholar
  48. Walker RB, Walker HM, Ashworth PR (1955) Calcium-magnesium nutrition with special reference to serpentine soils. Plant Physiol 30(3):214–221CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Centre for Mined Land Rehabilitation, Sustainable Minerals InstituteThe University of QueenslandBrisbaneAustralia
  2. 2.Université de Lorraine, INRA, Laboratoire Sols et EnvironnementNancyFrance
  3. 3.Chaney EnvironmentalBeltsvilleUSA
  4. 4.Sabah ParksKota KinabaluMalaysia

Personalised recommendations