Advertisement

Integrating nitrogen fixing structures into above- and belowground functional trait spectra in soy (Glycine max)

  • Adam R. MartinEmail author
  • Fallon J. Hayes
  • Kira A. Borden
  • Serra W. Buchanan
  • Andrew M. Gordon
  • Marney E. Isaac
  • Naresh V. Thevathasan
Regular Article
  • 117 Downloads

Abstract

Aims

Phenotypic trait variation across environmental gradients and through plant ontogeny is critical in driving ecological processes, especially in agroecosystems where single genotypes exist in high abundances. While variability in root traits plays a key role in belowground processes, few studies have identified the presence of an intraspecific “Root Economics Spectrum” (RES) within domesticated plants. Furthermore, little is known regarding if an intraspecific RES changes through plant ontogeny, and how trophic interactions – namely root nodulation – relate to above- or belowground trait spectra.

Methods

We evaluated covariation among 12 root, nodule, leaf, and stem traits in 134 plants of a single genotype of soy (Glycine max). Variation in these traits was assessed across five managed environmental conditions, and three plant ontogenetic stages.

Results

Root traits covaried along an intraspecific RES that represents a trade-off between resource acquisition and resource conservation. Variation along the RES was closely coordinated with hydraulic traits, but was orthogonal to nodule and leaf economics traits. Trait relationships varied strongly across managed environmental conditions and plant developmental stages.

Conclusions

Our results indicate the presence of an intraspecific RES in soy that is independent of root nodule investment. Patterns of phenotypic variation in below and aboveground soy traits demonstrate multivariate trait syndromes vary across environmental gradients and are dynamic through plant ontogeny.

Keywords

Functional trait Glycine max Intraspecific trait variation Leaf economics Spectrum Nitrogen fixation Nodules Root Economics Spectrum Root traits 

Notes

Acknowledgments

The authors with to thank Jacky Tong, Mahendra Doraisami, Victor Truong, Ravin Dyal, Sylwia Pucek, Arika Hisatsune, Senping Zhang, Jason Ngo, Tom Man Hui, Motaseem Jamal, Manisha Mistry, Anisha Prasad, Luke Greco, Julia Romano, Maimuna Hafiz, and Maathura Perapakaran for their assistance in the lab. This research was undertaken in part based on funding from the Canada Research Chairs program and a Natural Sciences and Engineering Research Council of Canada Discovery Grant to Marney E. Isaac, as well as a graduate research assistantship granted to Fallon Hayes courtesy of the Department of Physical and Environmental Sciences, University of Toronto Scarborough.

Supplementary material

11104_2019_4058_MOESM1_ESM.docx (2.1 mb)
ESM 1 (DOCX 2193 kb)

References

  1. Albert CH, Thuiller W, Yoccoz NG, Douzet R, Aubert S, Lavorel S (2010a) A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits. Funct Ecol 24:1192–1201.  https://doi.org/10.1111/j.1365-2435.2010.01727.x CrossRefGoogle Scholar
  2. Albert CH, Thuiller W, Yoccoz NG, Soudant A, Boucher F, Saccone P, Lavorel S (2010b) Intraspecific functional variability: extent, structure and sources of variation. J Ecol 98:604–613.  https://doi.org/10.1111/j.1365-2745.2010.01651.x CrossRefGoogle Scholar
  3. Anderegg LD, Berner LT, Badgley G, Sethi ML, Law BE, HilleRisLambers J (2018) Within-species patterns challenge our understanding of the leaf economics spectrum. Ecol Lett 21:734–744CrossRefGoogle Scholar
  4. Baraloto C, Paine CET, Poorter L, Beauchene J, Bonal D, Domenach AM, Herault B, Patino S, Roggy JC, Chave J (2010) Decoupled leaf and stem economics in rain forest trees. Ecol Lett 13:1338–1347.  https://doi.org/10.1111/j.1461-0248.2010.01517.x CrossRefGoogle Scholar
  5. Bardgett RD, Mommer L, De Vries FT (2014) Going underground: root traits as drivers of ecosystem processes. Trends Ecol Evol 29:692–699.  https://doi.org/10.1016/j.tree.2014.10.006 CrossRefGoogle Scholar
  6. Cadotte MW, Cavender-Bares J, Tilman D, Oakley TH (2009) Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. Plos One 4:e5695.  https://doi.org/10.1371/journal.pone.0005695 CrossRefGoogle Scholar
  7. Carlsson G, Palmborg C, Jumpponen A, Scherer-Lorenzen M, Hogberg P, Huss-Danell K (2009) N2 fixation in three perennial Trifolium species in experimental grasslands of varied plant species richness and composition. Plant Ecol 205:87–104.  https://doi.org/10.1007/s11258-009-9600-9 CrossRefGoogle Scholar
  8. Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Perez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Diaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071.  https://doi.org/10.1111/j.1461-0248.2008.01219.x CrossRefGoogle Scholar
  9. Damour G, Navas ML, Garnier E (2018) A revised trait-based framework for agroecosystems including decision rules. J Appl Ecol 55:12–24.  https://doi.org/10.1111/1365-2664.12986 CrossRefGoogle Scholar
  10. de la Riva EG, Maranon T, Perez-Ramos IM, Navarro-Fernandez CM, Olmo M, Villar R (2018) Root traits across environmental gradients in Mediterranean woody communities: are they aligned along the root economics spectrum? Plant Soil 424:35–48.  https://doi.org/10.1007/s11104-017-3433-4 CrossRefGoogle Scholar
  11. Delignette-Muller ML, Dutang C (2015) fitdistrplus: an R package for fitting distributions. J Stat Softw 64:1–34CrossRefGoogle Scholar
  12. Diaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Prentice IC, Garnier E, Bonisch G, Westoby M, Poorter H, Reich PB, Moles AT, Dickie J, Gillison AN, Zanne AE, Chave J, Wright SJ, Sheremet'ev SN, Jactel H, Baraloto C, Cerabolini B, Pierce S, Shipley B, Kirkup D, Casanoves F, Joswig JS, Gunther A, Falczuk V, Ruger N, Mahecha MD, Gorne LD (2016) The global spectrum of plant form and function. Nature 529:167–171.  https://doi.org/10.1038/nature16489 CrossRefGoogle Scholar
  13. Djekoun A, Planchon C (1991) Water status effect on dinitrogen fixation and photosynthesis in soybean. Agron J 83:316–322.  https://doi.org/10.2134/agronj1991.00021962008300020011x CrossRefGoogle Scholar
  14. Dray S (2008) On the number of principal components: a test of dimensionality based on measurements of similarity between matrices. Comput Stat Data Anal 52:2228–2237.  https://doi.org/10.1016/j.csda.2007.07.015 CrossRefGoogle Scholar
  15. Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20CrossRefGoogle Scholar
  16. Eissenstat DM (1991) On the relationship between specific root length and the rate of root proliferation - a field-study using citrus rootstocks. New Phytol 118:63–68.  https://doi.org/10.1111/j.1469-8137.1991.tb00565.x CrossRefGoogle Scholar
  17. Epskamp S, Cramer AOJ, Waldorp LJ, Schmittmann VD, Borsboom D (2012) Qgraph: network visualizations of relationships in psychometric data. J Stat Softw 48:1–18CrossRefGoogle Scholar
  18. Fehr WR, Caviness CE, Burmood DT, Pennington JS (1971) Stage of development descriptions for soybeans, Glycine max (L) Merrill. Crop Sci 11:929–931CrossRefGoogle Scholar
  19. Fleurat-Lessard P, Michonneau P, Maeshima M, Drevon JJ, Serraj R (2005) The distribution of aquaporin subtypes (PIP1, PIP2 and gamma-TIP) is tissue dependent in soybean (Glycine max) root nodules. Ann Bot 96:457–460.  https://doi.org/10.1093/aob/mci195 CrossRefGoogle Scholar
  20. Ford DM, Shibles R (1988) Photosynthesis and other traits in relation to chloroplast number during soybean leaf senescence. Plant Physiol 86:108–111.  https://doi.org/10.1104/pp.86.1.108 CrossRefGoogle Scholar
  21. Forstmeier W, Wagenmakers EJ, Parker TH (2017) Detecting and avoiding likely false-positive findings - a practical guide. Biol Rev 92:1941–1968.  https://doi.org/10.1111/brv.12315 CrossRefGoogle Scholar
  22. Fort F, Cruz P, Lecloux E, de Oliveira LB, Stroia C, Theau JP, Jouany C (2016) Grassland root functional parameters vary according to a community-level resource acquisition-conservation trade-off. J Veg Sci 27:749–758.  https://doi.org/10.1111/jvs.12405 CrossRefGoogle Scholar
  23. Furze JR, Martin AR, Nasielski J, Thevathasan NV, Gordon AM, Isaac ME (2017) Resistance and resilience of root fungal communities to water limitation in a temperate agroecosystem. Ecol Evol 7:3443–3454.  https://doi.org/10.1002/ece3.2900 CrossRefGoogle Scholar
  24. Gagliardi S, Martin AR, Virginio ED, Rapidel B, Isaac ME (2015) Intraspecific leaf economic trait variation partially explains coffee performance across agroforestry management regimes. Agric Ecosyst Environ 200:151–160.  https://doi.org/10.1016/j.agee.2014.11.014 CrossRefGoogle Scholar
  25. Garcia-Palacios P, Milla R, Delgado-Baquerizo M, Martin-Robles N, Alvaro-Sanchez M, Wall DH (2013) Side-effects of plant domestication: ecosystem impacts of changes in litter quality. New Phytol 198:504–513.  https://doi.org/10.1111/nph.12127 CrossRefGoogle Scholar
  26. Garnier E, Navas ML (2012) A trait-based approach to comparative functional plant ecology: concepts, methods and applications for agroecology. A review. Agron Sustain Dev 32:365–399.  https://doi.org/10.1007/s13593-011-0036-y CrossRefGoogle Scholar
  27. Hajek P, Hertel D, Leuschner C (2013) Intraspecific variation in root and leaf traits and leaf-root trait linkages in eight aspen demes (Populus tremula and P. tremuloides). Front Plant Sci 4.  https://doi.org/10.3389/fpls.2013.00415
  28. Hayes FJ, Buchanan SW, Coleman B, Gordon AM, Reich PB, Thevathasan NV, Wright IJ, Martin AR (2018) Intraspecific variation in soy across the leaf economics spectrum. Ann Bot-London: mcy147.  https://doi.org/10.1093/aob/mcy147
  29. Houlton BZ, Wang YP, Vitousek PM, Field CB (2008) A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454:327–U334.  https://doi.org/10.1038/nature07028 CrossRefGoogle Scholar
  30. Isaac ME, Carlsson G, Ghoulam C, Makhani M, Thevathasan NV, Gordon AM (2014) Legume performance and nitrogen acquisition strategies in a tree-based agroecosystem. Agroecol Sust Food 38:686–703.  https://doi.org/10.1080/21683565.2013.870630 CrossRefGoogle Scholar
  31. Isaac ME, Martin AR, Virginio ED, Rapidel B, Roupsard O, Van den Meersche K (2017) Intraspecific trait variation and coordination: root and leaf economics spectra in coffee across environmental gradients. Front Plant Sci 8.  https://doi.org/10.3389/fpls.2017.01196
  32. Kong DL, Ma CG, Zhang Q, Li L, Chen XY, Zeng H, Guo DL (2014) Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytol 203:863–872.  https://doi.org/10.1111/nph.12842 CrossRefGoogle Scholar
  33. Kraft NJB, Godoy O, Levine JM (2015) Plant functional traits and the multidimensional nature of species coexistence. P Natl Acad Sci USA 112:797–802.  https://doi.org/10.1073/pnas.1413650112 CrossRefGoogle Scholar
  34. Laliberte E (2017) Below-ground frontiers in trait-based plant ecology. New Phytol 213:1597–1603.  https://doi.org/10.1111/nph.14247 CrossRefGoogle Scholar
  35. Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the holy grail. Funct Ecol 16:545–556.  https://doi.org/10.1046/j.1365-2435.2002.00664.x CrossRefGoogle Scholar
  36. Lefcheck JS (2016) piecewiseSEM: piecewise structural equation modeling in R for ecology, evolution, and systematics. Methods Ecol Evol 7:573–579CrossRefGoogle Scholar
  37. Lenth RV (2016) Least-squares means: the R package lsmeans. J Stat Softw 69:1–33CrossRefGoogle Scholar
  38. Ma ZQ, Guo DL, Xu XL, Lu MZ, Bardgett RD, Eissenstat DM, McCormack ML, Hedin LO (2018) Evolutionary history resolves global organization of root functional traits. Nature 555:94–97.  https://doi.org/10.1038/nature25783 CrossRefGoogle Scholar
  39. Martin AR, Hale CE, Cerabolini BEL, Cornelissen JHC, Craine J, Gough WA, Kattge J, Tirona CK (2018) Inter- and intraspecific variation in leaf economics traits in wheat and maize. Aob Plants 10:ply006CrossRefGoogle Scholar
  40. Martin AR, Isaac ME (2015) Plant functional traits in agroecosystems: a blueprint for research. J Appl Ecol 52:1425–1435.  https://doi.org/10.1111/1365-2664.12526 CrossRefGoogle Scholar
  41. Martin AR, Isaac ME (2018) Functional traits in agroecology: advancing description and prediction in agroecosystems. J Appl Ecol 55:5–11.  https://doi.org/10.1111/1365-2664.13039 CrossRefGoogle Scholar
  42. Martin AR, Rapidel B, Roupsard O, Van den Meersche K, de M. Virginio Filho E, Barrios M, Isaac ME (2017) Intraspecific trait variation across multiple scales: the leaf economics Spectrum in coffee. Funct Ecol 31:604–612CrossRefGoogle Scholar
  43. Mason CM, Donovan LA (2015) Evolution of the leaf economics spectrum in herbs: evidence from environmental divergences in leaf physiology across Helianthus (Asteraceae). Evolution 69:2705–2720.  https://doi.org/10.1111/evo.12768 CrossRefGoogle Scholar
  44. Mason CM, McGaughey SE, Donovan LA (2013) Ontogeny strongly and differentially alters leaf economic and other key traits in three diverse Helianthus species. J Exp Bot 64:4089–4099.  https://doi.org/10.1093/jxb/ert249 CrossRefGoogle Scholar
  45. McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo DL, Helmisaari HS, Hobbie EA, Iversen CM, Jackson RB, Leppalammi-Kujansuu J, Norby RJ, Phillips RP, Pregitzer KS, Pritchard SG, Rewald B, Zadworny M (2015) Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytol 207:505–518.  https://doi.org/10.1111/nph.13363 CrossRefGoogle Scholar
  46. Messier J, McGill BJ, Lechowicz MJ (2010) How do traits vary across ecological scales? A case for trait-based ecology. Ecol Lett 13:838–848.  https://doi.org/10.1111/j.1461-0248.2010.01476.x CrossRefGoogle Scholar
  47. Milla R, Morente-Lopez J, Alonso-Rodrigo JM, Martin-Robles N, Chapin FS (2014) Shifts and disruptions in resource-use trait syndromes during the evolution of herbaceous crops. Proc R Soc B 281:20141429.  https://doi.org/10.1098/rspb.2014.1429 CrossRefGoogle Scholar
  48. Milla R, Osborne CP, Turcotte MM, Violle C (2015) Plant domestication through an ecological lens. Trends Ecol Evol 30:463–469.  https://doi.org/10.1016/j.tree.2015.06.006 CrossRefGoogle Scholar
  49. Mommer L, Weemstra M (2012) The role of roots in the resource economics spectrum. New Phytol 195:725–727.  https://doi.org/10.1111/j.1469-8137.2012.04247.x CrossRefGoogle Scholar
  50. Mondal MH, Brun WA, Brenner ML (1978) Effects of sink removal on photosynthesis and senescence in leaves of soybean (Glycine max L) plants. Plant Physiol 61:394–397.  https://doi.org/10.1104/pp.61.3.394 CrossRefGoogle Scholar
  51. Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142.  https://doi.org/10.1111/j.2041-210x.2012.00261.x CrossRefGoogle Scholar
  52. Nasielski J, Furze JR, Tan J, Bargaz A, Thevathasan NV, Isaac ME (2015) Agroforestry promotes soybean yield stability and N2-fixation under water stress. Agron Sustain Dev 35:1541–1549.  https://doi.org/10.1007/s13593-015-0330-1 CrossRefGoogle Scholar
  53. Niinemets U (2004) Adaptive adjustments to light in foliage and whole-plant characteristics depend on relative age in the perennial herb Leontodon hispidus. New Phytol 162:683–696.  https://doi.org/10.1111/j.1469-8137.2004.01071.x CrossRefGoogle Scholar
  54. Niinemets U (2015) Is there a species spectrum within the world-wide leaf economics spectrum? Major variations in leaf functional traits in the Mediterranean sclerophyll Quercus ilex. New Phytol 205:79–96.  https://doi.org/10.1111/nph.13001 CrossRefGoogle Scholar
  55. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos P, MHH S, Wagner H (2016) Vegan: Community Ecology Package in R version. 2:3–5Google Scholar
  56. Osnas JL, Lichstein JW, Reich PB, Pacala SW (2013) Global leaf trait relationships: mass, area, and the leaf economics spectrum. Science 340:741–744CrossRefGoogle Scholar
  57. Paradis E, Claude J, Strimmer K (2004) APE: analyses of Phylogenetics and evolution in R language. Bioinformatics 20:289–290.  https://doi.org/10.1093/bioinformatics/btg412 CrossRefGoogle Scholar
  58. Peng XB, Thevathasan NV, Gordon AM, Mohammed I, Gao PX (2015) Photosynthetic response of soybean to microclimate in 26-year-old tree-based intercropping systems in southern Ontario, Canada. Plos One 10:e0129467.  https://doi.org/10.1371/journal.pone.0129467 CrossRefGoogle Scholar
  59. Pinheiro J, Bates D, DebRoy S, Sarkar D, Team RC (2016) nlme: linear and nonlinear mixed effects models. R package version, pp 31–127Google Scholar
  60. Poorter L, Bongers F (2006) Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87:1733–1743. https://doi.org/10.1890/0012-9658(2006)87[1733:Ltagpo]2.0.Co;2Google Scholar
  61. Prieto I, Roumet C, Cardinael R, Dupraz C, Jourdan C, Kim JH, Maeght JL, Mao Z, Pierret A, Portillo N, Roupsard O, Thammahacksa C, Stokes A (2015) Root functional parameters along a land-use gradient: evidence of a community-level economics spectrum. J Ecol 103:361–373.  https://doi.org/10.1111/1365-2745.12351 CrossRefGoogle Scholar
  62. Reynolds PE, Simpson JA, Thevathasan NV, Gordon AM (2007) Effects of tree competition on corn and soybean photosynthesis, growth, and yield in a temperate tree-based agroforestry intercropping system in southern Ontario, Canada. Ecol Eng 29:362–371.  https://doi.org/10.1016/j.ecoleng.2006.09.024 CrossRefGoogle Scholar
  63. Roucou A, Violle C, Fort F, Roumet P, Ecarnot M, Vile D (2018) Shifts in plant functional strategies over the course of wheat domestication. J Appl Ecol 55:25–37.  https://doi.org/10.1111/1365-2664.13029 CrossRefGoogle Scholar
  64. Roumet C, Birouste M, Picon-Cochard C, Ghestem M, Osman N, Vrignon-Brenas S, Cao KF, Stokes A (2016) Root structure-function relationships in 74 species: evidence of a root economics spectrum related to carbon economy. New Phytol 210:815–826.  https://doi.org/10.1111/nph.13828 CrossRefGoogle Scholar
  65. Ryan MG, Phillips N, Bond BJ (2006) The hydraulic limitation hypothesis revisited. Plant Cell Environ 29:367–381.  https://doi.org/10.1111/j.1365-3040.2005.01478.x CrossRefGoogle Scholar
  66. Salvagiotti F, Cassman KG, Specht JE, Walters DT, Weiss A, Dobermann A (2008) Nitrogen uptake, fixation and response to fertilizer N in soybeans: a review. Field Crop Res 108:1–13.  https://doi.org/10.1016/j.fcr.2008.03.001 CrossRefGoogle Scholar
  67. Salvagiotti F, Specht JE, Cassman KG, Walters DT, Weiss A, Dobermann A (2009) Growth and nitrogen fixation in high-yielding soybean: impact of nitrogen fertilization. Agron J 101:958–970.  https://doi.org/10.2134/agronj2008.0173x CrossRefGoogle Scholar
  68. Schweitzer LE, Harper JE (1980) Effect of light, dark, and temperature on root nodule activity (acetylene reduction) of soybeans. Plant Physiol 65:51–56.  https://doi.org/10.1104/pp.65.1.51 CrossRefGoogle Scholar
  69. Sendall KM, Reich PB (2013) Variation in leaf and twig CO2 flux as a function of plant size: a comparison of seedlings, saplings and trees. Tree Physiol 33:713–729.  https://doi.org/10.1093/treephys/tpt048 CrossRefGoogle Scholar
  70. Streeter JG (1985) Nitrate inhibition of legume nodule growth and activity. 2. Short-term studies with high nitrate supply. Plant Physiol 77:325–328.  https://doi.org/10.1104/pp.77.2.325 CrossRefGoogle Scholar
  71. Streeter JG (2003) Effects of drought on nitrogen fixation in soybean root nodules. Plant Cell Environ 26:1199–1204.  https://doi.org/10.1046/j.1365-3040.2003.01041.x CrossRefGoogle Scholar
  72. Thevathasan NV, Gordon AM (2004) Ecology of tree intercropping systems in the north temperate region: experiences from southern Ontario, Canada. Agrofor Syst 61(2):257–268.  https://doi.org/10.1023/B:AGFO.0000029003.00933.6d Google Scholar
  73. Thomas SC (2010) Photosynthetic capacity peaks at intermediate size in temperate deciduous trees. Tree Physiol 30:555–573.  https://doi.org/10.1093/treephys/tpq005 CrossRefGoogle Scholar
  74. Thomas SC (2011) Age-related changes in tree growth and functional biology: the role of reproduction. In: Meinzer FC, Lachenbruch B, Dawson TE (eds) Size-and age-related changes in tree structure and function. Springer, DordrechtGoogle Scholar
  75. Vance CP, Heichel GH (1991) Carbon in N2 fixation - limitation or exquisite adaptation. Annu Rev Plant Physiol 42:373–392.  https://doi.org/10.1146/annurev.pp.42.060191.002105 CrossRefGoogle Scholar
  76. Violle C, Enquist BJ, McGill BJ, Jiang L, Albert CH, Hulshof C, Jung V, Messier J (2012) The return of the variance: intraspecific variability in community ecology. Trends Ecol Evol 27:244–252.  https://doi.org/10.1016/j.tree.2011.11.014 CrossRefGoogle Scholar
  77. Voisin AS, Munier-Jolain NG, Salon C (2010) The nodulation process is tightly adjusted to plant growth. An analysis using environmentally and genetically induced variation of nodule number and biomass in pea. Plant Soil 337:399–412CrossRefGoogle Scholar
  78. Weemstra M, Mommer L, Visser EJW, van Ruijven J, Kuyper TW, Mohren GMJ, Sterck FJ (2016) Towards a multidimensional root trait framework: a tree root review. New Phytol 211:1159–1169.  https://doi.org/10.1111/nph.14003 CrossRefGoogle Scholar
  79. Westoby M (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199:213–227.  https://doi.org/10.1023/A:1004327224729 CrossRefGoogle Scholar
  80. Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Syst 33:125–159.  https://doi.org/10.1146/annurev.ecolsys.33.010802.150452 CrossRefGoogle Scholar
  81. Whitehead M, Isaac ME (2012) Effects of shade on nitrogen and phosphorus acquisition in cereal-legume intercropping systems. Agriculture 2:12–24CrossRefGoogle Scholar
  82. Williams LE, Phillips DA (1980) Effect of irradiance on development of apparent nitrogen fixation and photosynthesis in soybean. Plant Physiol 66:968–972.  https://doi.org/10.1104/pp.66.5.968 CrossRefGoogle Scholar
  83. Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827.  https://doi.org/10.1038/nature02403 CrossRefGoogle Scholar
  84. Zadworny M, McCormack ML, Zytkowiak R, Karolewski P, Mucha J, Oleksyn J (2017) Patterns of structural and defense investments in fine roots of scots pine (Pinus sylvestris L.) across a strong temperature and latitudinal gradient in Europe. Glob Chang Biol 23:1218–1231.  https://doi.org/10.1111/gcb.13514 CrossRefGoogle Scholar
  85. Zhao YW, Xiao X, Bi DM, Hu F (2008) Effects of sulfur fertilization on soybean root and leaf traits, and soil microbial activity. J Plant Nutr 31:473–483.  https://doi.org/10.1080/01904160801895001 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Adam R. Martin
    • 1
    • 2
    Email author
  • Fallon J. Hayes
    • 1
  • Kira A. Borden
    • 1
  • Serra W. Buchanan
    • 1
  • Andrew M. Gordon
    • 3
  • Marney E. Isaac
    • 1
    • 2
  • Naresh V. Thevathasan
    • 3
  1. 1.Department of Physical and Environmental SciencesUniversity of Toronto ScarboroughScarboroughCanada
  2. 2.Centre for Critical Development StudiesUniversity of Toronto ScarboroughScarboroughCanada
  3. 3.School of Environmental SciencesUniversity of GuelphGuelphCanada

Personalised recommendations